Soil Engineering, Environmental Engineering, Materials Testing, Geology
October 6, 2020
Project No.: 20229-01

TO: San Bernardino City Unified School District Facilities Planning and Development
956 West $9^{\text {th }}$ Street
San Bernardino, California 92411
SUBJECT: Preliminary Soil Investigation Report for Access Ramp at Kimbark Elementary School, 18021 West Kenwood Avenue, San Bernardino, California

In accordance with your authorization, GeoMat Testing Laboratories, Inc. (GeoMat) is pleased to present our Preliminary Soil Investigation Report for the proposed access ramp at 18021 West Kenwood Avenue, San Bernardino, California. This report is in fulfillment of our proposal dated September 29, 2020 and your subsequent authorization. The accompanying report presents a summary of our findings, recommendations and limitation of work for the proposed site development.

The primary purpose of this investigation and report is to provide an evaluation of the existing geotechnical conditions at the site as they relate to the design and construction of the proposed development. More specifically, this investigation was to address geotechnical conditions for the preliminary design of the foundation for the proposed ramp structure.

Based on the results of our investigation, the proposed development is feasible from a geotechnical standpoint and it is our professional opinion that the proposed development will not be subject to a hazard from settlement, slippage, or landslide, provided the recommendations of this report are incorporated into the proposed development. It is also our opinion that the proposed development will not adversely affect the geologic stability of the site or adjacent properties provided the recommendations contained in this report are incorporated into the proposed construction.

We appreciate the opportunity to assist you and look forward to future projects. If you should have any questions regarding this report, please do not hesitate to call our office. We appreciate this opportunity to be of service.

Submitted for GeoMat Testing Laboratories, Inc.

Toldudnanthalil.

Haytham Nabilsi, GE 2375
Project Engineer haytham@geomatlabs.com

Art Martinez
Staff Engineer art@geomatlabs.com

Distribution: (3) Addressee

TABLE OF CONTENTS

1.0 INTRODUCTION 1
1.1 EXISTING SITE CONDITIONS 1
1.2 PROPOSED DEVELOPMENT 1
1.3 FIELD WORK 1
1.4 LABORATORY TESTING 1
2.0 GEOTECHNICAL CONDITIONS 2
2.1 REGIONAL GEOLOGIC FINDINGS 2
2.2 SUBSURFACE CONDITIONS 2
2.3 GROUNDWATER 2
2.4 EXPANSIVE SOIL 2
2.5 CORROSIVE SOIL 3
2.6 SEISMIC DESIGN PARAMETERS 3
2.7 SLOPE STABILITY 4
3.0 TENTATIVE RECOMMENDATIONS 5
3.1 EARTHWORK RECOMMENDATIONS 5
3.2 TEMPORARY EXCAVATIONS 6
3.3 FOUNDATION RECOMMENDATIONS 6
3.4 SLABS-ON-GRADE 7
3.5 RETAINING WALLS 8
3.6 SITE DRAINAGE 8
4.0 ADDITIONAL SERVICES 9
5.0 GEOTECHNICAL RISK 10
6.0 LIMITATION OF INVESTIGATION 10

ATTACHMENTS:

Figure $1 \quad$ Site Location Map
Plate 1 Exploratory Boring Location Map
Plate 2 Geotechnical Cross Section A-A'
Plate $3 \quad$ Typical Retaining Wall Drainage Detail

APPENDIX:

Appendix A Selected References
Appendix B Geotechnical Boring Logs
Appendix C Laboratory Test Results
Appendix D 2019 CBC Seismic Design Parameters
Appendix E Slope Stability Analysis

1.0 INTRODUCTION

1.1 EXISTING SITE CONDITIONS

The subject site is located on the south side of Kenwood Avenue between Kimbark Avenue and Woodlawn Avenue in San Bernardino, California. More specifically, the subject site is the sloped landscaping area located between the school building and the Kenwood Avenue street parking spaces.

This sloped landscaped area generally consists of grass ground cover and several mature trees. The slope gradient is approximately $3 \mathrm{H}: 1 \mathrm{~V}$ for a total height of 12 feet.

1.2 PROPOSED DEVELOPMENT

We understand that the site is proposed for an access ramp connecting the upper street level parking spaces to the lower school building level. The ramp will be of a switchback form and be constructed from concrete slab-on-grade and founded on continuous shallow footings.

1.3 FIELD WORK

Three exploratory borings were excavated on October 4, 2020 to maximum depth of 4 feet below existing ground surface utilizing manual digging and auguring tools. Sampling was conducted with a Dames and Moore California Ring Sampler (see Exploratory Boring Location Map, Plate 1). This sampler has three inches external diameter, 2.5 inches inside diameter, and is lined with one-inch high brass rings, with an inside diameter of 2.41 -inches. The sample barrel was driven into the ground at the bottom of the excavation with 35 -pound hammer with a free fall of approximately 24 -inches. Sampler driving resistance, expressed as number of blows for 12 -inch of penetration, was recorded. To convert the field blow count to an SPT equivalent, we have utilized the following conversion formula by D.M. Burmister, 1948, "The importance and practical use of relative density in soil mechanics: Proceedings of ASTM, v. 48:1249" and the correlating SPT " N " values can be found in the borehole logs.

1.4 LABORATORY TESTING

Laboratory tests were performed on selected soil samples. The tests consisted primarily of the following:

- Moisture Content
- Dry Density
- Sieve Analysis
- Direct Shear
- Soluble Sulfate Content
(ASTM D2216)
(ASTM D2937)
(ASTM D422)
(ASTM D3080)
(Extinction/Turbidimetric Method)

The soil classifications are in conformance with the Unified Soil Classifications System (USCS), as outlined in the Classification and Symbols Chart (Appendix B). A summary of our laboratory testing, ASTM designation, and graphical presentation of test results is presented in Appendix C.

2.0 GEOTECHNICAL CONDITIONS

2.1 REGIONAL GEOLOGIC FINDINGS

Based on the Geologic Map of the Devore quadrangle (Dibblee Foundation Map DF-105) the site is located in an area mapped as older alluvial fan deposits (Qoa). These deposits are generally described as consisting of low elevated remnants of alluvial gravel and sand.

2.2 SUBSURFACE CONDITIONS

Detailed log of the exploratory excavation is presented in Appendix B of this report. The earth materials encountered within the exploratory excavations are generally described below.

Based on our exploratory boreholes, the site soil generally consists of silty sand with gravel (USCS "SM") to the total depth explored of 4 feet below existing ground surface. This material is generally described as loose in the upper 18 inches and become medium dense, dry to slightly moist, and contains few to some gravel.

2.3 GROUNDWATER

Groundwater study is not within the scope of our work. Groundwater was not encountered in our exploratory borings excavated onsite to a depth of 4 ' below ground surface.

A contour map showing minimum depths to ground water in the Santa Ana River Valley Region was constructed by the United States Geological Survey (USGS) and subsequently, a report (USGS Map MF1802) was published in 1985. The map was constructed by contouring the shallowest water level measurements reported to the California Department of Water Resources (CDWR) for the period from 19731979. Based on our review of the map, the minimum depth to ground water in the project site area, during this period, may be around 10 feet below ground surface.

Please note that the potential for rain or irrigation water locally seeping through from elevated areas and showing up near grades cannot be precluded. Our experience indicates that surface or near-surface groundwater conditions can develop in areas where groundwater conditions did not exist prior to site development, especially in areas where a substantial increase in surface water infiltration results from landscape irrigation. Fluctuations in perched water elevations are likely to occur in the future due to variations in precipitation, temperature, consumptive uses, and other factors including mounding of perched water over bedrock or natural soil. Mitigation for nuisance shallow seeps moving from elevated lower areas will be needed if encountered. These mitigations may include subdrains, horizontal drains, toe drains, french drains, heel drains or other devices.

2.4 EXPANSIVE SOIL

Expansive soils are characterized by their ability to undergo significant volume changes (shrink or swell) due to variations in moisture content. Changes in soil moisture content can result from precipitation, landscape irrigation, utility leakage, roof drainage, perched groundwater, drought, or other factors and may result in unacceptable settlement or heave of structures or concrete slabs supported on grade.

Based on laboratory classification, the upper foundation soil onsite is expected to have a very low expansion potential (El<20), as defined in ASTM D4829. This would require verification subsequent to completion of new footing excavations.

2.5 CORROSIVE SOIL

To preliminarily assess the sulfate exposure of concrete in contact with the site soils, a representative soil sample was tested for water-soluble sulfate content. The test results suggest the site soils have a negligible potential for sulfate attack (less than 0.015 percent) based on commonly accepted criteria. We recommend following the procedures provided in ACI 318-19, Section 19.3, Table 19.3.2.1 for exposure "S0". We recommend Type II cement for all concrete work in contact with soil.

Ferrous metal pipes should be protected from potential corrosion by bituminous coating, etc. We recommend that all utility pipes be nonmetallic and/or corrosion resistant. Recommendations should be verified by soluble sulfate and corrosion testing of soil samples obtained from specific locations at the completion of rough grading.

2.6 SEISMIC DESIGN PARAMETERS

Based on current standards, the proposed development is expected to be designed in accordance with the requirements of the 2019 California Building Code (CBC). The 2019 California Building Code (CBC) provides procedures for earthquake resistant structural design that include considerations for on-site soil conditions, occupancy, and the configuration of the structure including the structural system and height.

Based on the soils encountered in the exploratory borehole within the subject site and with consideration of the geologic units mapped in the area, it is our opinion that the site soil profile corresponds to Site Class D in accordance with Section 1613.2.2 of the California Building Code (CBC 2019) and Chapter 20 of ASCE/SEI 7-16.

We have downloaded the seismic design parameters in accordance with the provisions of the current California Building Code (CBC, 2019) and ASCE/SEI 7-16 Standard using the Structural Engineers Association of California, OSHPD Seismic Design Maps Web Application (https://seismicmaps.org). The mapped seismic parameters are attached to this report in Appendix D.

The 2019 CBC requires that a site-specific ground motion study be performed in accordance with Section 11.4.8 of ASCE 7-16 for Site Class D sites with a mapped S1 value greater than 0.2. However, Section 11.4.8 of ASCE 7-16 also indicates an exception (exception 2) to the requirement for a site specific ground motion hazard analysis for certain structures on Site Class D sites. Also, the commentary for Section 11 of ASCE 716 (Page 534 of Section C11 of ASCE 7-16) indicates that "In general, this exception effectively limits the requirements for site-specific hazard analysis to very tall and or flexible structures at Site Class D sites."

Based on our understanding of the proposed development, the seismic design parameters presented below were calculated assuming that the exception in Section 11.4 .8 applies to the proposed structure at this site. However, the structural engineer should verify that this exception is applicable to the proposed structure. Based on the exception, the spectral response accelerations presented below were calculated using the site coefficients Fa and Fv from ASCE 7-16 Tables 11.4-1 and 11.4-2.

2019 CBC SEISMIC DESIGN PARAMETERS

Short Period Site Coefficient Fa	1.200
Long Period Site Coefficient Fv	1.700
Mapped Spectral Acceleration at 0.2 sec Period Ss	2.454
Mapped Spectral Acceleration at 1.0 sec Period S1	1.045
Site Class	D
Site Modified Spectral Acceleration at 0.2 sec Period SMS	2.945
Site Modified Spectral Acceleration at 1.0 sec Period SM1	1.777
Design Spectral Acceleration at 0.2 sec Period SDS	1.964
Design Spectral Acceleration at 1.0 sec Period SD1	1.184

The above tabulated values as well as the values obtained from the website seismicmaps.org (US seismic design maps) are sufficient assuming a site specific ground motion hazard analysis is not required per exception 2 of ASCE 7-16 Section 11.4.8 and Section 11 commentary of ASCE 7-16.

2.7 SLOPE STABILITY

The stability of the proposed slope and ramp configuration at the subject site was evaluated by analyzing the elevations obtained from Civil Grading Plan prepared by Sitetech, Inc (Sheet C-3, 06/24/2020) as depicted in our Geotechnical Cross Section A-A' on Plate 2.

2.7.1 Soil Strength Parameters

The shear strength parameters used in the stability analyses were based on laboratory test results of relatively undisturbed soil samples obtained from the onsite material. The following table summarizes the parameters used in the stability analysis.

Analysis Type	Material	Strength Parameter	Friction Angle $\left(^{\circ}\right.$)	Cohesion (psf)	Unit Weight (pcf)
Surficial/Global	Alluvium	Ultimate Strength	$\phi=34.1$	$\mathrm{C}=184$	$\mathrm{Y}=120$

2.7.2 Surficial Stability

Surficial stability of the slope was analyzed for the onsite slope assuming an infinite $2 \mathrm{H}: 1 \mathrm{~V}$ slope with seepage parallel to the slope surface and consistent subsoil profile. The failure plane for this case is parallel to the surface of slope and the limit equilibrium method can be applied readily. The following factor of safety is derived from a homogeneous $\mathrm{c}-\phi$ soil based on effective stress analysis. The results of the analyses indicate that the existing slopes have a minimum factor of safety of 1.78 for surficial stability under static condition.

$$
\begin{array}{lllll}
\text { Factor of Safety }=\frac{C+H * \gamma_{b} * \cos ^{2}(\beta) \tan (\varphi)}{\gamma_{s a t} * H * \sin (\beta) \cos (\beta)} & \text { Where: } & \mathrm{H}= & 3 \mathrm{feet} & \text { (saturation zone) } \\
& \mathrm{Y}_{\mathrm{b}}= & 58 \mathrm{pcf} & \text { (buoyant soil unit weight) } \\
& Y_{\text {sat }}= & 130 \mathrm{pcf} & \text { (saturated soil unit weight) } \\
& \beta= & 26.6^{\circ} & \text { (slope angle) }
\end{array}
$$

Considering the shear strength of soil and the slope inclination, seasonal local surficial sloughing cannot be entirely precluded and should be considered by the project design team. Permanent devices should be designed by the project civil engineer such as but not limited to wall free board, " V " ditches, benches, etc., to minimize and contain any remote pop-outs. In addition, to minimize the potential for surficial sloughing the slope should be maintained with appropriate deep root vegetation and ground cover.

2.7.3 Global Stability Analysis

Global stability analysis was performed to evaluate the probable static and dynamic gross stability of the existing slope configuration. The analyses utilize the simplified method of slices by Bishop through the software program GEOSTASE and the upper boundary theorem of plasticity through the software program LimitState:GEO. The results of the slope stability analyses are provided in Appendix E of this report.

The seismic stability of the site was calculated in conformance with the Southern California Earthquake Center (SCEC), 2002, "Recommended Procedures for Implementation of DMG Special Publication 117, Guidelines for Analyzing and Mitigating Landslide Hazards in California," and the California Geological Survey (CGS), Special Publication 117A, 2008 "Guidelines for Evaluating and Mitigating Seismic Hazards in California." A seismic coefficient ($\mathrm{K}_{\text {eq }}$) of 0.473 was utilized in our analysis and was derived based on a maximum allowable displacement of 5 cm , a computed PGAm of 1.266 g , a moment magnitude of 7.9 , and a distance to the ground motion source of 1.3 km .

Our analyses indicate that the existing slopes have a minimum factor of safety of 3.08 and 1.28 under static and pseudo-static conditions, respectively. Based on our field observation and slope stability analyses, the existing slopes are considered stable.

Continuing stability of the slope will greatly depend on controlling the water, proper planting and maintaining the drainage for proper functioning. Drainage control measures recommended in this report and the project civil engineer should be implemented during site development.

3.0 TENTATIVE RECOMMENDATIONS

3.1 EARTHWORK RECOMMENDATIONS

The following recommendations are provided regarding aspects of the anticipated earthwork construction. These recommendations should be considered subject to revision based on additional geotechnical evaluation of the conditions observed by the Geotechnical Engineer during site development.

3.1.1 Site Clearing, Grubbing and Fill Removal

All debris, undocumented fill, abandoned utility lines, roots, irrigation appurtenances, underground structures, deleterious materials, etc., should be removed and hauled offsite. Cavities created during site clearance should be backfilled in a controlled manner.

3.1.2 Slab-on-Grade Preparation

The slab subgrade should be scarified to a depth of at least 8 -inches below proposed subgrade soil elevation, moisture conditioned, and recompacted to at least 90 percent relative compaction.

3.1.3 Footing Preparation

The footing excavations should be observed by the soil engineer. The footings should be excavated into competent native soil that is determined to be firm and unyielding. If loose soil is encountered in the bottom of the footing excavations, we recommend deepening the footing excavation into competent native material. The bottom of the excavation should be void from slough.

3.1.4 Trench Backfill

All utility trenches and retaining wall backfills should be mechanically compacted to the minimum requirements of at least 90 percent relative compaction. Onsite soils derived from trench excavations can be used as trench backfill except for deleterious materials. Soils with sand equivalent greater than 30 may be utilized for pipe bedding and shading. Pipe bedding should be required to provide uniform support for piping. Excavated material from footing trenches should not be placed in slab-on-grade areas unless properly compacted and tested.

3.1.5 Compacted Fills/Imported Soils

Any soil to be placed as fill, whether presently onsite or import, should be approved by the soil engineer or his representative prior to their placement. All onsite soils to be used as fill should be cleansed of any roots, or other deleterious materials. Rocks larger than 8-inches in diameter should be removed from soil to be used as compacted fill.

All fills should be placed in 6 - to 8 -inch loose lifts, thoroughly watered, or aerated to near optimum moisture content, mixed and compacted to at least 90 or 95 percent relative compaction depending on the material (subgrade soil or aggregate base) and application (pavement subgrade, building pad, etc.). This is relative to the maximum dry density determined by ASTM D1557 Test Method. Any imported soils should be sandy (preferably USCS "SM" or "SW", and very low in expansion potential) and approved by the soil engineer. The soil engineer or his representative should observe the placement of all fill and take sufficient tests to verify the moisture content and the uniformity and degree of compaction obtained.

3.2 TEMPORARY EXCAVATIONS

All excavation slopes and shoring systems should meet the minimum requirements of the Occupational Safety and Health (OSHA) Standards. Maintaining safe and stable slopes on excavations is the responsibility of the contractor and will depend on the nature of the soils and groundwater conditions encountered and his method of excavation. Excavations during construction should be carried out in such a manner that failure or ground movement will not occur. The contractor should perform any additional studies deemed necessary to supplement the information contained in this report for the purpose of planning and executing his excavation plan.

3.2.1 Cal/OSHA Soil Type

The subsurface soil expected to be encountered during site development may be classified as "Soil Type B" per the California Occupational Safety and Health Administration (Cal/OSHA).

3.2.2 Excavation Characteristics

The upper soil onsite is generally composed of medium dense silty sand with gravel which is not expected to exhibit difficult excavation resistance for typical excavating equipment in good working condition.

3.2.3 Safe Vertical Cuts

Temporary un-surcharged excavations of 4 feet high may be made at a vertical gradient for short periods of time. Temporary un-surcharged excavations greater than 4 feet may be trimmed back at $1 \mathrm{H}: 1 \mathrm{~V}$ gradients to a maximum height of 10 feet. Exposed conditions during construction should be verified by the project geotechnical engineer. No excavations should take place without the direct supervision of the project geotechnical engineer. If potentially unstable soil conditions are encountered, modifications of slope ratios for temporary cuts may be required.

3.2.4 Excavation Setbacks

No excavations should be conducted, without special considerations, along property lines, public right-ofways, or existing foundations, where the excavation depth will encroach within the "zone of influence". The "zone of influence" of the existing footings, property lines, or public right-of-way may be assumed to be below a 45 -degree line projected down from the bottom edge of the footing, property line, or right-of-way.

3.3 FOUNDATION RECOMMENDATIONS

The proposed ramp may be supported on conventional shallow foundation systems deriving support in competent native soil (see Section 3.1.3 Footing Preparation). Foundations should be deepened as necessary to penetrate through soft or disturbed soil at the discretion of the Geotechnical Engineer. All foundation excavations must be observed and approved by the Geotechnical Engineer's representative, prior to placing steel reinforcement or concrete.

3.3.1 Bearing Capacity

Spread, continuous, or pad-type foundations carried at least 36-inches below the lowest adjacent grade may be designed to impose a net dead-plus-live load pressure of 2000 psf. The bearing capacity may be increased 15 percent for every additional foot of embedment, to a maximum allowable bearing pressure of 2500 psf . A one-third increase may be used for wind or seismic loads.

3.3.2 Lateral Resistance

Resistance to lateral footing will be provided by passive earth pressure and base friction. For footings bearing against firm native material, passive earth pressure may be considered to be developed at a rate of 280 psf per foot of depth to a maximum of 2000 psf . Base friction may be computed at 0.40 times the normal load. If passive earth pressure and friction are combined to provide required resistance to lateral forces, the value of the passive pressure should be reduced to two-thirds the value.

3.3.3 Settlement

The onsite soils below the foundation depth have relatively high strengths and will not be subject to significant stress increases from foundations of the new structure. Therefore, estimated total long-term static and seismic settlement between similarly loaded adjacent foundation systems should not exceed 1inch. The structures should be designed to tolerate a differential settlement on the order of $1 / 2$-inch over a 30-foot span.

3.3.4 Reinforcement

Footing reinforcement should be determined by the structural engineer; however, minimum reinforcement should be at least two No. 4 reinforcing bars, top and bottom. Reinforcement and size recommendations presented in this report are considered the minimum necessary for the soil conditions present at the foundation level and are not intended to supersede the design of the project structural engineer or criteria of the governing agencies for the project.

3.4 SLABS-ON-GRADE

Slabs-on-grade should be at least 4-inches thick and reinforced with at least No. 4 bars at 16 -inches on-center both ways, properly centered in mid thickness of slabs. The structural engineer should design the actual slab thickness and reinforcement based on structural load requirements.

3.4.1 Modulus of Subgrade Reaction

A coefficient of vertical subgrade reaction (Kv) of 130 psi/in may be assumed for the building pad compacted fill soils. The modulus of subgrade reaction was estimated based on the NAVFAC 7.1 design charts. This value is for a small loaded area (1 sq . ft or less) such as for wheel loads or point loads and should be adjusted for larger loaded areas, as necessary.

3.4.2 Capillary Break \& Vapor Membrane

If vinyl or other moisture-sensitive floor coverings are planned, we recommend that the floor slab in those areas be underlain by a vapor membrane and capillary break consisting of a minimum 10-mil vapor-retarding membrane over a 4 -inch thick layer of clean sand. The 4-inch thick layer of sand should be placed between the subgrade soil and the membrane to decrease the possibility of damage to the membrane.

3.4.3 Slab Curling Precautions

A low-slump concrete should be used to minimize possible curling of the slab. Additionally, a layer of sand may be placed over the vapor retarding membrane to reduce slab curling. If this sand bedding is used, care should be taken during the placement of the concrete to prevent displacement of the sand. However, the need for sand and/or the thickness of sand above the moisture vapor barrier should be specified by the structural engineer or concrete contractor. The selection of sand above the barrier is not a geotechnical engineering issue and hence outside our purview.

3.4.4 Subgrade Exposure

Construction activities and exposure to the environment can cause deterioration of the prepared subgrade. Therefore, we recommend that our field representative observe the condition of the final subgrade soils immediately prior to slab-on-grade construction, and, if necessary, perform further density and moisture content tests to determine the suitability of the final prepared subgrade.

Additionally, the slab subgrade should be moisture conditioned to 2 to 4 percent above the optimum moisture content, to a depth of 12 inches. The moisture content of the floor slab subgrade soils should be verified by the geotechnical engineer within 24 hours prior to placing the vapor retarding membrane.

3.5 RETAINING WALLS

The following lateral earth pressures, in conjunction with the lateral resistance parameters provided in the Foundation Recommendations section of this report, may be used for the design of retaining walls with free draining compacted backfills. If passive earth pressure and friction are combined to provide required resistance to lateral forces, the value of the passive pressure should be reduced to two-thirds the following recommendations.

Lateral Earth Pressure Condition	Soil Backfill Condition	Equivalent Fluid Pressure (pcf)	Earth Pressure Coefficient
Active Case (Drained)	Level	34	$\mathrm{~K}_{\mathrm{a}}=0.28$
At-Rest Case (Drained)	Level	53	$\mathrm{~K}_{0}=0.44$
Total Unit Weight of Soil	120 pcf		

All retaining walls and block walls footings should be founded in compacted fill or firm native soils. We recommend drainage for retaining walls to be provided in accordance with Plate 3 of this report. Maximum precautions should be taken when placing drainage materials and during backfilling. All wall backfills should be properly compacted to at least 90 percent relative compaction.

3.6 SITE DRAINAGE

Positive drainage should be provided and maintained for the life of the project around the perimeter of all structures (including slopes and retaining walls) and all foundations toward streets or approved drainage devices to minimize water infiltrating into the underlying natural and engineered fill soils. In addition, finish subgrade adjacent to exterior footings should be sloped down (at least 2%) and away to facilitate surface drainage. Perimeter water collection devices may be installed around the structure to collect roof/irrigation/natural drainage. Roof drainage should be collected and directed away from foundations via nonerosive devices. Over the slope drainage must not be permitted.

Water, either natural or by irrigation, should not be permitted to pond or saturate the foundation soils. Planter areas and large trees adjacent to the foundations are not recommended. All planters and terraces should be provided with drainage devices. Internal drainage should be directed to approved drainage collection devices.

Location of drainage device should be in accordance with the design civil engineer's drainage and erosion control recommendations. The owner should be made aware of the potential problems, which may develop when drainage is altered through construction of retaining walls, patios and other devices. Ponded water, leaking irrigation systems, over watering or other conditions which could lead to ground saturation should be avoided. Surface and subsurface runoff from adjacent properties should be controlled. Area drainage collection should be directed through approved drainage devices. All drainage devices should be properly maintained.

4.0 ADDITIONAL SERVICES

Plan Reviews

The recommendations provided in this report are based on preliminary information and subsurface conditions as interpreted from limited exploratory boreholes at the site. We should be retained to review the final grading and foundation plans to revise our conclusions and recommendations, as necessary. Professional fees will apply for each review.

Our conclusions and recommendations should also be reviewed and verified during site grading and revised accordingly if exposed geotechnical conditions vary from our preliminary findings and interpretations.

Additional Observation and/or Testing

GeoMat Testing Laboratories, Inc. should observe and/or test at the following stages of construction.

- During slab-on-grade scarification and compaction.
- Following footing excavation and prior to placement of footing materials.
- During wetting of slab subgrade and prior to placement of slab materials.
- During all trench backfill.
- When any unusual conditions are encountered.

Final Report of Compaction During Grading

A final report of compaction control should be prepared subsequent to the completion of grading. The report should include a summary of work performed, laboratory test results, and the results and locations of field density tests performed during grading.

5.0 GEOTECHNICAL RISK

The concept of risk is an important aspect of the geotechnical evaluation. The primary reason for this is that the analytical methods used to develop geotechnical recommendations do not comprise an exact science. The analytical tools which geotechnical engineers use are generally empirical and must be used in conjunction with engineering judgment and experience. Therefore, the solutions and recommendations presented in the geotechnical evaluation should not be considered risk-free and, more importantly, are not a guarantee that the interaction between the soils and the proposed structure will perform as planned.

The engineering recommendations presented in the preceding sections constitute GeoMat Testing Laboratories professional estimate of those measures that are necessary for the proposed development to perform according to the proposed design based on the information generated and referenced during this evaluation, and GeoMat Testing Laboratories experience in working with these conditions.

6.0 LIMITATION OF INVESTIGATION

This report was prepared for the exclusive use on the new construction. The use by others, or for the purposes other than intended, is at the user's sole risk.

Our investigation was performed using the degree of care and skill ordinarily exercised, under similar circumstances, by reputable Geotechnical Engineers practicing in this or similar locations within the limitations of scope, schedule, and budget. No other warranty, expressed or implied, is made as to the conclusions and professional advice included in this report.

The field and laboratory test data are believed representative of the site; however, soil conditions can vary significantly. As in most projects, conditions revealed during construction may be at variance with preliminary findings. If this condition occurs, the possible variations must be evaluated by the Project Geotechnical Engineer and adjusted as required or alternate design recommended.

This report is issued with the understanding that it is the responsibility of the owner, or his representative, to ensure that the information and recommendations contained herein are brought to the attention of the engineer for the development and incorporated into the plans, and the necessary steps are taken to see that the contractor and subcontractor carry out such recommendations in the field.

This firm does not practice or consult in the field of safety engineering. We do not direct the contractor's operations, and we cannot be responsible for other than our own personnel on the site; therefore, the safety of others is the responsibility of the contractor. The contractor should notify the owner if he considers any of the recommended actions presented herein to be unsafe.

The findings, conclusions, and recommendations presented herein are based on our understanding of the proposed development and on subsurface conditions observed during our site work, and are valid as of the present date. However, changes in the conditions of a property can occur with the passage of time, whether they be due to natural processes or the works of man on this or adjacent properties. In addition, changes in applicable or appropriate standards may occur, whether they result from legislation or the broadening of knowledge.

GEOTECHNICAL CROSS SECTION A-A' 18021 KENWOOD AVENUE

	9	${ }^{\text {DRA }}$	${ }_{\text {AM }}^{\text {AMN }}$	PLATE
		CHECKED PROUECT	N	

OPTION 1: PIPE SURROUNDED WITH CLASS 2 PERMEABLE MATERIAL

OPTION 2: GRAVEL WRAPPED IN FILTER FABRIC

Class 2 Filter Permeable Material Gradation
Per Caltrans Specifications

Sieve Size	Percent Passing
$1 "$	100
$3 / 4 "$	$90-100$
$3 / 8 "$	$40-100$
No. 4	$25-40$
No. 8	$18-33$
No. 30	$5-15$
No. 50	$0-7$
No. 200	$0-3$

GENERAL NOTES:
*Waterproofing should be provided where moisture nuisance problem through the wall is undesireable.
*Water proofing of the walls is not under the purview of the geotechnical engineer.
*All drains should have a gradient of 1 percent minimum.
*Outlet portion of the subdrain should have a 4-inch diamater solid pipe discharged into a suitable disposal area designed by the project engineer. The subdrain pipe should be accessible for maintenance (rodding).
*Other subdrain backfill options are subject to the review by the geotechnical engineer and modification of design parameters.

Notes:

1) Sand should have a sand equivalent of 30 or greater and may be densified by water jetting.
2) 1 Cu . ft. per ft. of $1 / 4$ - to $11 / 2$-inch size gravel wrapped in filter fabric
3) Pipe type should be ASTM D1527 Acrylonitrile Butadiene Styrene (ABS) SDR35 or ASTM D1785 Polyvinyl Chlorise plastic (PVC), Schedule 40, Armco A2000 PVC, or approved equivalent. Pipe should be installed with perforations down. Perforations should be $3 / 8$-inch in diameter placed at the ends of a $120-\mathrm{degre} \mathrm{\epsilon}$ arc in two rows at 3-inch on center (staggered).
4) Filter Fabric should be Mirafi 140NC or approved equivalent.
5) Weephole should be 3 -inch minimum diameter and provided at 10-foot maximum intervals. if exposure is permitted, weepholes should be located 12 -inches above finished grade. If exposure is not permitted, such as for a wall adjacent to a sidewalk/curb, a pipe under the sidewalk to be discharged through the curb face or equivalent should be provided. For a basement-type wall, a proper subdrain outlet system should be provided.
6) Retaining wall plans should be reviewed and approved by the geotechnical engineer.
7) Walls over six feet in height are subject to a special review by the geotechnical engineer and modifications to the above requirements.

APPENDIX A

SELECTED REFERENCES

Sitetech Inc. "Kimbark Elementary School, 1802 W. Kenwood Ave, San Bernardino, CA 92410," Civil Grading Plan, Sheet C-3, June 24, 2020.

City of San Bernardino General Plan, November 1, 2005
San Bernardino County Land Use Plan, Geologic Hazard Overlays, Sheet FH21C
Dibblee, T.W., and Minch, J.A., 2003, Geologic map of the Devore quadrangle, San Bernardino County, California: Dibblee Geological Foundation, Dibblee Foundation Map DF-105, scale 1:24,000

USGS, Contour Map Showing Minimum Depth to Ground Water, Upper Santa Ana River Valley, California, 1973-1979, Scott E. Carson and Jonathan C. Matti, 1985.

Department of Water Resources, Water Data Library
USGS, National Water Information System, Web Interface, Groundwater Levels for California.
USGS TopoView Interactive Webpage (https://ngmdb.usgs.gov/topoview/viewer/\#4/39.98/-107.53)
Structural Engineers Association of California, OSHPD Seismic Design Maps Interactive Website (https://seismicmaps.org/)

California Geological Survey, Map No. 6, Fault Activity Map of California, Compiled by Charles W. Jennings and William A. Bryant, California Geologic Data Map Series, 2010

Department of the Navy, Design Manual 7.01, Soil Mechanics, September 1986.
Department of the Navy, Design Manual 7.02, Foundation and Earth Structures, September 1986.
Department of the Army, US Army Corps of Engineers, Engineering and Design, Bearing Capacity of Soils, EM 1110-1-1905.

Robert Day, Geotechnical Engineer's Portable Handbook.
Robert Day, Geotechnical Foundation Handbook.

APPENDIX B

SOIL CLASSIFICATION CHART

MAJOR DIVISIONS			SYMBOLS	TYPICAL DESCRIPTIONS
COARSE GRAINED SOILS MORE THAN 50% OF MATERIAL IS LARGER THAN NO. 200 SIEVE SIZE	GRAVEL AND GRAVELLY SOILS MORE THAN 50\% OF COARSE FRACTION RETAINED ON NO. 4 SIEVE	CLEAN GRAVELS (LITTLE OR NO FINES)	GW	Well-graded gravels, gravel - sand mixtures, Little or no fines
			GP	Poorly graded gravels, gravel - Sand mixuris, litte or no Fines
		GRAVELS WITH FINES (APPRECIABLE AMOUNT OF FINES	GM	SLITY Gravels, gravel - SAnd - Sllt mixtures
			GC	CLAYEY GRavels, gravel - sand - clay mixures
	SAND AND SANDY SOILS MORE THAN 50\% OF COARSE FRACTION PASSING NO. 4 SIEVE	CLEAN SANDS (LITTLE OR NO FINES)	SW	WELL-GRADED SANDS, GRAVELLY SANDS, LItTLE OR No Fines
			SP	Poorly graded sands, gravelly sands, little or no fines
		SANDS WITH FINES (APPRECIABLE AMOUNT OF FINES)	SM	SLITY SANDS, SAND - SILT MIXTURES
			SC	Clayey sands, sand - Clay mixures
FINE GRAINED SOILS MORE THAN 50\% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE SIZE	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50	ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
			CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
			OL	ORGANIC SILTS AND ORGANIC SLLTY CLAYS OF LOW PLASTICITY
	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50	MH	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SANDY OR SILTY SOILS, ELASTIC SILTS
			CH	INORGANIC CLAYS OF HIGH PLASTICITY
			OH	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
HIGHLY ORGANIC SOILS			PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC Contents

NOTE: Dual symbols are used to indicate gravels or sand with $5-12 \%$ fines and soils with fines classifying as CL-ML. Symbols separated by a slash

Sampler and Symbol Descriptions

$\left.$| RELATIVE DENSITY | | CONSISTENCY | | |
| :--- | :---: | :--- | :---: | :---: | | UNCONFINED |
| :--- |
| COMPRESSIVE | \right\rvert\,

Bulk "grab" sample taken from the auger cuttings or excavated soil

1.4" I.D./2" O.D. Standard Penetration Test (ASTM D1586) sampler (SPT)

R 2.5"I.D./3" O.D. Modified California Ring Sampler (Ring)

	MOISTURE CONDITION
DESCRIPTION	CRITERIA
DRY	Absence of moisture, dusty, dry to the touch
MOIST	Damp but no visible water
WET	Visible free water, usually soil is below water table

	CONSTITUENT DESCRIPTIONS		
DESCRIPTION	CRITERIA	DESCRIPTION	CRITERIA
TRACE	Less than 5%	SOME	30% to 45%
FEW	5% to 10%	MOSTLY	50% to 100%
LITTLE	15% to 25%		

KEY TO BORING LOGS

APPENDIX C

LABORATORY TEST RESULTS

Soil Engineering, Environmental Engineering, Materials Testing, Geology

SOLUBLE SULFATE AND CHLORIDE TEST RESULTS

Project Name	8021 W	Kenwood A	Test Date	10/05/2020
Project No.	29-01		Date Sampled	10/04/2020
Project Locatio	1802	W. Kenwood	Sampled By	AM
Location in Str	re	B-1 @ 0-3'	Sample Type	Bulk
Sampled Class	ation	SM	Tested By	AM

TESTING INFORMATION

Sample weight before drying
Sample weight after drying
Sample Weight Passing No. 10 Sieve Moisture
173.6 g
164.4 g
100.0 g
5.6 \%

Location	Mixing Ratio	Dilution Factor	Sulfate Reading (ppm)	Sulfate Content		Chloride Reading (ppm)	Chloride Content		pH
				(ppm)	(\%)		(ppm)	(\%)	
B-1	3	1	<50	<150	<0.015				
			Average			Average			Average

ACI 318-19 Table 19.3.2.1 - Requirements for Concrete by Exposure Class

$\begin{aligned} & \text { Exposure } \\ & \text { Class } \end{aligned}$	WaterSoluble Sulfate (\%)	Maximum w/cm	$\begin{aligned} & \text { Minimum } \\ & \mathbf{f}^{\prime} c \\ & \text { (psi) } \end{aligned}$	Cementitous Material (Types)			Calcium Chloride Admixture	
				$\begin{aligned} & \text { ASTM } \\ & \text { C150- } \end{aligned}$	ASTM C595	$\begin{aligned} & \text { ASTM } \\ & \text { C1157 } \end{aligned}$		
S0	<0.10	N/A	2500	No Type Restriction	No Type Restriction	No Type Restriction	No Restriction	
S1	0.10 to 0.20	0.50	4000	II	Type IP, IS, or IT with (MS) Designation	MS	No Restriction	
S2	0.20 to 2.00	0.45	4500	V	Type IP, IS, or IT with (HS) Designation	HS	Not Permitted	
S3 Option 1	>2.00	0.45	4500	V + Pozzolan or Slag Cement	Type IP, IS, or IT with (HS) Designation + Pozzolan or Slag Cement		Not Permitted	
Option 2	>2.00	0.40	5000	V	Types with (HS) designation	HS	Not Permitted	
ExposureClass	$\underset{w / c m}{\text { Maximum }}$	$\begin{gathered} \text { Minimum } \\ \text { f'c } \\ (p s i) \end{gathered}$	Maximum Water-Soluble Chloride ion (Cl^{-}) Content in Concrete, Percent by Wight of Cement			Additional Provisions		
			Nonprestressed Concrete		Prestressed Concrete			
C0	N/A	2500	1.00		0.06	None		
C1	N/A	2500	0.30		0.06	None		
C2	0.40	5000	0.15		0.06	Concrete Cover		

Caltrans classifies a site as corrosive to structural concrete as an area where soil and/or water contains $>500 \mathrm{pp}$ chloride,$>2000 \mathrm{ppm}$ sulfate, or has a $\mathrm{pH}<5.5$. A minimum resistivity of less than 1000 ohm-cm indicates the potential for corrosive environment requiring testing for the above criteria.

The information in this form is not intended for corrosion engineering design. If corrosion is critical, a corrosion specialist should be contacted to provide further recommendations.

APPENDIX D

Latitude, Longitude: 34.236011, -117.411911

Type	Value	Description
SDC	null -See Section 11.4.8	Seismic design category
F_{a}	1.2	Site amplification factor at 0.2 second
F_{v}	null -See Section 11.4.8	Site amplification factor at 1.0 second
PGA	1.055	$\mathrm{MCE}_{\mathrm{G}}$ peak ground acceleration
$\mathrm{F}_{\mathrm{PGA}}$	1.2	Site amplification factor at PGA
PGA_{M}	1.266	Site modified peak ground acceleration
TL	12	Long-period transition period in seconds
SsRT	3.217	Probabilistic risk-targeted ground motion. (0.2 second)
SsUH	3.59	Factored uniform-hazard (2\% probability of exceedance in 50 years) spectral acceleration
SsD	2.454	Factored deterministic acceleration value. (0.2 second)
S1RT	1.328	Probabilistic risk-targeted ground motion. (1.0 second)
S1UH	1.506	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.
S1D	1.045	Factored deterministic acceleration value. (1.0 second)
PGAd	1.055	Factored deterministic acceleration value. (Peak Ground Acceleration)
C_{RS}	0.896	Mapped value of the risk coefficient at short periods
$\mathrm{C}_{\mathrm{R} 1}$	0.882	Mapped value of the risk coefficient at a period of 1 s

DISCLAIMER

While the information presented on this website is believed to be correct, SEAOC /OSHPD and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this website.

APPENDIX
 E

18021 West Kenwood Ave, San Bernardino, Ca.

 Project No. 20229-01GeolW\&\&/sers\AbdullahlOneDrive - Geomat Testing Laboratories\GeoMat Reports\ANNUAL REPORTSI2020 REPORTS\20229.San Bernardino Kimbark Elementary School|Geostatse 2|Proposed.gsd


```
        *** GEOSTASE(R) ***
** GEOSTASE(R) (c)Copyright by Garry H. Gregory, Ph.D., P.E.,D.GE **
    ** Current Version 4.30.31-Double Precision, August 2019 **
    (All Rights Reserved-Unauthorized Use Prohibited)
```

	SLOPE STABILITY ANALYSIS SOFTWARE
	Simplified Bishop, Simplified Janbu, or General Equilibrium (GE)
Options.	
	(Spencer, Morgenstern-Price, USACE, and Lowe \& Karafiath)
	Including Pier/Pile, Planar Reinf, Nail, Tieback, Line Loads
	Applied Forces, Fiber-Reinforced Soil (FRS), Distributed Loads
	Nonlinear Undrained Shear Strength, Curved Strength Envelope,
	Anisotropic Strengths, Water Surfaces, 3-Stage Rapid Drawdown
	2- or 3-Stage Pseudo-Static \& Simplified Newmark Seismic Analyse

Analysis Date:	10/ 6/ 2020
Analysis Time:	
Analysis By:	GeoMat

Input File Name: C:\Users \backslash Abdullah \backslash OneDrive - Geomat Testing
 Elementary School\Geostatse $2 \backslash$ Proposed.gsd

Output File Name: C:\Users $\backslash A b d u l l a h \backslash O n e D r i v e ~-~ G e o m a t ~ T e s t i n g ~$
 Elementary School\Geostatse 2\Proposed.OUT

Unit System: English

PROJECT: 18021 West Kenwood Ave, San Bernardino, Ca.

DESCRIPTION: Project No. 20229-01

BOUNDARY DATA

18 Surface Boundaries

18 Total Boundaries

Boundary No.	$\begin{aligned} & x-1 \\ & (f t) \end{aligned}$	$\begin{aligned} & Y-1 \\ & (\mathrm{ft}) \end{aligned}$	$\begin{aligned} & x-2 \\ & (f t) \end{aligned}$	$\begin{aligned} & Y-2 \\ & (f t) \end{aligned}$	Soil Type Below Bnd
1	0.000	124.000	10.000	124.000	1
2	10.000	124.000	19.000	124.000	1
3	19.000	124.000	21.000	124.000	1
4	21.000	124.000	23.000	123.000	1
5	23.000	123.000	24.000	122.000	1
6	24.000	122.000	28.000	122.000	1
7	28.000	122.000	34.000	119.000	1
8	34.000	119.000	35.000	118.000	1
9	35.000	118.000	39.000	118.000	1
10	39.000	118.000	45.000	115.000	1
11	45.000	115.000	46.000	115.000	1
12	46.000	115.000	50.000	115.000	1
13	50.000	115.000	57.000	111.000	1
14	57.000	111.000	58.000	111.000	1
15	58.000	111.000	63.000	110.000	1
16	63.000	110.000	66.000	109.000	1
17	66.000	109.000	70.000	109.000	1
18	70.000	109.000	100.000	109.000	1
User Spec	X-Origin $=$	0.000(ft)			
User Spec	Y-Orig		000(ft)		

MOHR-COULOMB SOIL PARAMETERS
1 Type(s) of Soil Defined

Drained Shear Strength Reduction Factor applied after first stage $=1.0000$

TRIAL FAILURE SURFACE DATA
Circular Trial Failure Surfaces Have Been Generated Using A Random

Procedure.
1000 Trial Surfaces Have Been Generated.
1000 Surfaces Generated at Increments of 0.1562(in) Equally Spaced Within the Start Range

Unless XCLUDE Lines Were Specified, The Minimum Elevation To Which A Surface Extends Is $Y=80.00(f t)$

Specified Maximum Radius $=10000.000(f t)$
3.000(ft) Line Segments Were Used For Each Trial Failure Surface.

Restrictions Have Been Imposed Upon The Angle Of Initiation. The Angle Has Been Restricted Between The Angles Of -60.0 And -30.0 deg.

The Spencer Method Was Selected for FS Analysis.
Selected fx function = Constant (1.0)
Selected Convergence parameters for spencer method:
Initial estimate of $\mathrm{FS}=1.500$
FS tolerance $=0.000001000$
Initial estimate of theta(deg) $=15.00$
Theta tolerance(radians) $=0.0001000$
Minimum theta(deg) = -45.00 ; Maximum theta(deg) = 45.00
Theta convergence Step Factor $=5000.00$
Maximum number of iterations $=50$
Allowable negative side force $=-1000.0(\mathrm{lbs})$
Maximum force imbalance $=100.000000(l \mathrm{lbs})$
Maximum moment imbalance = 100.000000 (ft/lbs)
Selected Lambda Coefficient = 1.00
Specified Tension Crack Water Depth Factor $=0.000$
Total Number of Trial Surfaces Attempted $=1000$
WARNING! The Factor of Safety Calculation for one or More Trial Surfaces Did Not Converge in 50 Iterations.

Number of Trial Surfaces with Non-Converged FS = 7
Number of Trial Surfaces With Valid FS = 993

Percentage of Trial Surfaces With Non-Converged and/or Non-Valid FS Solutions of the Total Attempted = 0.7%

Statistical Data On All Valid FS Values:
FS Max $=5.926$ FS Min $=3.476$ FS Ave $=3.865$ Standard Deviation = 0.327 Coefficient of Variation $=\quad 8.47 \%$

Critical Surface is Sequence Number 287 of Those Analyzed.

```
*****BEGINNING OF DETAILED GEOSTASE OUTPUT FOR CRITICAL SURFACE FROM A SEARCH*****
BACK-CALCULATED CIRCULAR SURFACE PARAMETERS:
Circle Center At X = 53.074129(ft) ; Y = 156.875345(ft); and Radius \(=49.730029(f t)\)
```

Circular Trial Failure Surface Generated With 20 Coordinate Points

Point	X-Coord.	Y-Coord.
No.	(ft)	(ft)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
(ft)
(ft)
$15.761 \quad 124.000$
$17.811 \quad 121.810$
$19.990 \quad 119.747$
$22.288 \quad 117.820$
$24.699 \quad 116.035$
$27.214 \quad 114.398$
$29.822 \quad 112.916$
$32.515 \quad 111.594$
$35.283 \quad 110.437$
$38.115 \quad 109.448$
$41.002 \quad 108.633$
$43.933 \quad 107.993$
$46.897 \quad 107.530$
$49.884 \quad 107.248$
$52.882 \quad 107.146$
$55.881 \quad 107.225$
$58.870 \quad 107.484$
$61.838 \quad 107.924$
$64.774 \quad 108.541$

Iter. No.	Theta $($ deg $)$ $(f x=1.0)$	FS (Moment)	FS (Force)		Lambda

Factor Of Safety For The Preceding Specified Surface $=3.476$ Theta $(f x=1.0)=-14.57$ Deg Lambda $=-0.260$

The Spencer Method Has Been Selected For Analysis.
Selected $f x$ function $=$ Constant (1.0)

SELECTED CONVERGENCE PARAMETERS FOR ANALYSIS METHOD:
Initial estimate of $\mathrm{FS}=1.500$
FS tolerance $=0.000001000$
Initial estimate of theta(deg) $=15.00$
Theta tolerance(radians) $=0.0001000$
Minimum theta $(\mathrm{deg})=-45.00$; Maximum theta $(\mathrm{deg})=45.00$
Theta convergence Step Factor $=5000.00$
Maximum number of iterations $=50$
Maximum force imbalance $=100.000000(l b s)$
Maximum moment imbalance(if Applicable) $=100.000000$ (ft/lbs)

Selected Lambda Coefficient = 1.00
Tension Crack Water Force $=\quad 0.00(l b s)$
Specified Tension Crack Water Depth Factor $=0.000$

Depth of Tension Crack (zo) at Side of First Slice $=0.000(f t)$
Depth of Water in Tension Crack $=0.000(f t)$
Theoretical Tension Crack Depth $=5.780(f t)$
NOTE: In Table 1 following, when a tension crack with water is present on the
first slice (right facing slope) or on the last slice (left facing slope), the "side force" in the tension crack is set equal to the water pressure resultant.
*** Table 1 - Line of Thrust(if applicable) and Slice Force Data

Slice X Side Force $f x$ Force Angle
Vert. Shear
No. Coord. Coord. h/H
(lbs)
(Deg)
Force(lbs)

	1	15.76	124.00	0.000	0.00	1.000	0.00
0.0	2	17.81	122.90	0.500	2.11	1.000	-14.57
-0.5	3	19.00	121.12	0.130	133.90	1.000	-14.57
-33.7	4	19.99	120.42	0.158	312.52	1.000	-14.57
-78.6	5	21.00	119.77	0.170	525.16	1.000	-14.57
-132.1	6	22.29	118.96	0.206	845.88	1.000	-14.57
-212.8	7	23.00	118.56	0.223	1009.43	1.000	-14.57
-253.9	8	24.00	118.03	0.270	1236.98	1.000	-14.57
-311.2	9	24.70	117.65	0.271	1400.90	1.000	-14.57
-352.4	10	27.21	116.35	0.257	2018.25	1.000	-14.57
-507.7	11	28.00	115.97	0.251	2207.00	1.000	-14.57
-555.2	12	29.82	115.10	0.268	2664.35	1.000	-14.57
-670.2	13	32.52	113.99	0.294	3196.61	1.000	-14.57
-804.1	14	34.00	113.45	0.308	3404.71	1.000	-14.57
-856.4	15	35.00	113.09	0.341	3536.31	1.000	-14.57
-889.5	16	35.28	112.99	0.338	3571.94	1.000	-14.57
-898.5	17	38.12	112.09	0.309	3808.67	1.000	-14.57
-958.0	18	39.00	111.84	0.300	3837.67	1.000	-14.57
-965.3							

	19	41.00	111.28	0.316	3901.44	1.000	-14.57
-981.4	20	43.93	110.58	0.343	3806.36	1.000	-14.57
-957.5	21	45.00	110.37	0.354	3710.73	1.000	-14.57
-933.4	22	46.00	110.17	0.341	3621.57	1.000	-14.57
-911.0	23	46.90	109.99	0.330	3540.94	1.000	-14.57
-890.7	24	49.88	109.54	0.295	3090.42	1.000	-14.57
-777.4	25	50.00	109.53	0.294	3065.29	1.000	-14.57
-771.0	26	52.88	109.23	0.336	2485.98	1.000	-14.57
-625.3	27	55.88	109.03	0.409	1845.08	1.000	-14.57
-464.1	28	57.00	108.98	0.452	1603.59	1.000	-14.57
-403.4	29	58.00	108.93	0.425	1403.52	1.000	-14.57
-353.0	30	58.87	108.90	0.423	1235.06	1.000	-14.57
-310.7	31	61.84	108.87	0.409	642.93	1.000	-14.57
-161.7	32	63.00	108.91	0.407	423.60	1.000	-14.57
-106.6	33	64.77	108.97	0.497	164.09	1.000	-14.57
-41.3	34	66.00	109.05	$1.000+$	33.80	1.000	-14.57
-8.5							

NOTE: A value of $0.000-$ for h / H indicates that the line of thrust is at or below the lower boundary of the sliding mass. A value of $1.000+$ for h / H indicates that
the line of thrust is at or above the upper boundary of the sliding mass.

```
***Table 2 - Geometry Data on the 34 Slices***
```

Slice Width Height X-Cntr Y-Cntr-Base Y-Cntr-Top Alpha Beta Base

Length No. $(f t)$	$(d e g)$	$(d e g)$					
1	2.05	1.10	16.79	122.90	124.00	-46.89	0.00
3.00							

2	1.19	2.75	18.41	121.25	124.00	-43.43	0.00
1.64							
3	0.99	3.78	19.49	120.22	124.00	-43.43	0.00
1.36							
4	1.01	4.68	20.49	119.32	124.00	-39.98	0.00
1.32							
5	1.29	5.32	21.64	118.36	123.68	-39.98	-26.57
1.68							
6	0.71	5.62	22.64	117.56	123.18	-36.52	-26.57
0.89							
7	1.00	5.58	23.50	116.92	122.50	-36.52	-45.00
1.24							
8	0.70	5.71	24.35	116.29	122.00	-36.52	0.00
0.87							
9	2.51	6.78	25.96	115.22	122.00	-33.06	0.00
3.00							
10	0.79	7.83	27.61	114.17	122.00	-29.60	0.00
0.90							
11	1.82	8.11	28.91	113.43	121.54	-29.60	-26.57
2.10							
12	2.69	8.16	31.17	112.26	120.42	-26.15	-26.57
3.00							
13	1.48	8.09	33.26	111.28	119.37	-22.69	-26.57
1.61							
14	1.00	7.74	34.50	110.76	118.50	-22.69	-45.00
1.08 (1.00 .80							
15	0.28	7.50	35.14	110.50	118.00	-22.69	0.00
0.31							
16	2.83	8.06	36.70	109.94	118.00	-19.23	0.00
3.00							
17	0.88	8.68	38.56	109.32	118.00	-15.78	0.00
0.92							
18	2.00	8.58	40.00	108.92	117.50	-15.78	-26.57
2.08							
19	2.93	7.95	42.47	108.31	116.27	-12.32	-26.57
3.00							
20	1.07	7.36	44.47	107.91	115.27	-8.86	-26.57
1.08							
21	1.00	7.25	45.50	107.75	115.00	-8.86	0.00
1.01 (0.00 0.00							
22	0.90	7.40	46.45	107.60	115.00	-8.86	0.00
0.91 (0.90							
23	2.99	7.61	48.39	107.39	115.00	-5.41	0.00
3.00							
24	0.12	7.75	49.94	107.25	115.00	-1.95	0.00
0.12							
25	2.88	6.98	51.44	107.19	114.18	-1.95	-29.74
2.88							
26	3.00	5.31	54.38	107.19	112.50	1.51	-29.74
3.00							

27	1.12	4.05	56.44	107.27	111.32	4.96	-29.74
1.12							
28	1.00	3.63	57.50	107.37	111.00	4.96	0.00
1.00							
29	0.87	3.47	58.44	107.45	110.91	4.96	-11.31
0.87							
30	2.97	2.83	60.35	107.70	110.53	8.42	-11.31
3.00							
31	1.16	2.07	62.42	108.05	110.12	11.88	-11.31
1.19							
32	1.77	1.35	63.89	108.35	109.70	11.88	-18.43
1.81							
33	1.23	0.50	65.39	108.71	109.20	15.34	-18.43
1.27							
34	0.45	0.06	66.22	108.94	109.00	15.34	0.00
0.46							

Table 2A - Coordinates of Slice Points Defining the Slip Surface

Point No.	$\mathrm{X}-\mathrm{Pt}$ (ft)	$\mathrm{Y}-\mathrm{Pt}$ (ft)
1	15.760761	124.000000
2	17.810983	121.809888
3	19.000000	120.684209
4	19.989534	119.747386
5	21.000000	118.900236
6	22.288486	117.820000
7	23.000000	117.293148
8	24.000000	116.552681
9	24.699474	116.034744
10	27.213722	114.398114
11	28.000000	113.951358
12	29.822081	112.916068
13	32.515059	111.593998
14	34.000000	110.973108
15	35.000000	110.554984
16	35.282856	110.436715
17	38.115398	109.448431
18	39.000000	109.198496
19	41.002378	108.632743
20	43.933289	107.992620
21	45.000000	107.826278
22	46.000000	107.670339
23	46.897466	107.530390
24	49.884121	107.247735
25	50.000000	107.243791
26	52.882385	107.145686

27	55.881346	107.224612
28	57.000000	107.321783
29	58.000000	107.408647
30	58.870092	107.484226
31	61.837745	107.923585
32	63.000000	108.168052
33	64.773505	108.541088
34	66.000000	108.877431
35	66.446955	109.000000

Table 3 - Force and Pore Pressure Data On The 34 Slices (Excluding Reinforcement)

Distributed
Slice Weight

No. (lbs)
(lbs)
$1 \quad 269.4$
0.00

2
0.00

3
0.00

4
0.00

5
0.00

6
0.00

7

Ubeta	Ubeta
Force	Stress
Top	Top
(lbs)	(psf)

Ualpha
Force

Earthquake
Pore Force
Bot
(lbs)

Pressure	Hor	Ver
(psf)	(lbs)	(lbs)

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.00

9
0.00

10
0.00

11
0.00

12
0.00

13
0.00

14
0.00 15
0.0
0.0
0.0
0.0
0.0
254.7
0.0
0.0
0.0
0.0
0.0
0.0
0.00

16
0.00 17
0.00 18
0.00 19
0.00 20
0.00

21
0.00

22
0.00 23
0.00 24
0.00 25
0.00 26
0.00 27
0.00 28
0.00 29
0.00

30
0.00 31
0.00 32
0.00 33
0.00 34
0.00

2738.8	0.0	0.0	0.0	0.0	0.0	0.0
921.0	0.0	0.0	0.0	0.0	0.0	0.0
2062.6	0.0	0.0	0.0	0.0	0.0	0.0
2797.3	0.0	0.0	0.0	0.0	0.0	0.0
941.8	0.0	0.0	0.0	0.0	0.0	0.0
870.2	0.0	0.0	0.0	0.0	0.0	0.0
796.9	0.0	0.0	0.0	0.0	0.0	0.0
2727.7	0.0	0.0	0.0	0.0	0.0	0.0
107.8	0.0	0.0	0.0	0.0	0.0	0.0
2414.9	0.0	0.0	0.0	0.0	0.0	0.0
1911.3	0.0	0.0	0.0	0.0	0.0	0.0
543.2	0.0	0.0	0.0	0.0	0.0	0.0
436.2	0.0	0.0	0.0	0.0	0.0	0.0
361.9	0.0	0.0	0.0	0.0	0.0	0.0
1006.1	0.0	0.0	0.0	0.0	0.0	0.0
288.8	0.0	0.0	0.0	0.0	0.0	0.0
287.3	0.0	0.0	0.0	0.0	0.0	0.0
72.9	0.0	0.0	0.0	0.0	0.0	0.0
3.3	0.0	0.0	0.0	0.0	0.0	0.0
				0	0	0

TOTAL WEIGHT OF SLIDING MASS $=35238.67$ (lbs)
EFFECTIVE WEIGHT OF SLIDING MASS $=35238.67$ (lbs)
TOTAL AREA OF SLIDING MASS $=$ 293.66(ft2)
TABLE 4 - SOIL STRENGTH \& SOIL OPTIONS DATA ON THE 34 SLICES Slice Soil Cohesion Phi(Deg) Options

No.	Type	$($ psf)	
1	1	184.00	34.10
2	1	184.00	34.10
3	1	184.00	34.10
4	1	184.00	34.10
5	1	184.00	34.10
6	1	184.00	34.10
7	1	184.00	34.10
8	1	184.00	34.10
9	1	184.00	34.10
10	1	184.00	34.10
11	1	184.00	34.10
12	1	184.00	34.10
13	1	184.00	34.10
14	1	184.00	34.10
15	1	184.00	34.10
16	1	184.00	34.10
17	1	184.00	34.10
18	1	184.00	34.10
19	1	184.00	34.10
20	1	184.00	34.10
21	1	184.00	34.10
22	1	184.00	34.10
23	1	184.00	34.10
24	1	184.00	34.10
25	1	184.00	34.10
26	1	184.00	34.10
27	1	184.00	34.10
28	1	184.00	34.10
29	1	184.00	34.10
30	1	184.00	34.10
31	1	184.00	34.10
32	1	184.00	34.10
33	1	184.00	34.10
34	1	184.00	34.10
12	10		

SOIL OPTIONS:
A = ANISOTROPIC SHEAR STRENGTH
C = CURVED STRENGTH ENVELOPE (TANGENT PHI \& C)
$F=F I B E R-R E I N F O R C E D ~ S O I L$ (FRS)
M = INDEPENDENT MULTI-STAGE SHEAR STRENGTH
$\mathrm{N}=\mathrm{NONLINEAR} \mathrm{UNDRAINED} \mathrm{SHEAR} \mathrm{STRENGTH}$
R = RAPID DRAWDOWN OR RAPID LOADING (SEISMIC) SHEAR STRENGTH
NOTE: Phi and C in Table 4 are modified values based on specified Soil Options (if any).

Slice Alpha X-Coord. Base No. (deg) Slice Cntr Leng. Normal/Vert.

Ratio

1	-46.89
0.470	
2	-43.43
0.645	
3	-43.43
0.667	
4	-39.98

16.79
18.41
19.49
(ft)
3.00
1.64
1.36
1.32
1.68
0.89
1.24
0.87
3.00
0.90
2.10
3.00
1.61
1.08
0.31
3.00
0.92
2.08
3.00
1.08
1.01
0.91
0.711
$5-39.98$
21.64
22.64
23.50
24.35
25.96
27.61
28.91
31.17
33.26
34.50
35.14
36.70
38.56
40.00
42.47
44.47
45.50
46.45

Total
Total
Total
Normal Stress Vert. Stress
(psf)
(psf)
Stress
61.75
213.06
302.75
398.71
456.58
504.73
500.61
512.66
637.03
764.01
792.38
824.71
844.36
807.32
782.91
868.38
964.88
954.55
912.20
870.71
858.30
875.70
131.41
330.35
454.10
561.14
638.13
674.56
669.25
684.75
814.03
939.03
973.29
979.28
970.52
928.31
900.50
966.89
1041.18
1030.05
954.41
882.87
870.20
887.96

23	-5.41	48.39	3.00	929.12	913.31
1.017					
24	-1.95	49.94	0.12	976.80	930.51
1.050					
25	-1.95	51.44	2.88	880.72	837.81
1.051					
26	1.51	54.38	3.00	696.03	637.31
1.092					
27	4.96	56.44	1.12	553.84	485.57
1.141					
28	4.96	57.50	1.00	499.55	436.17
1.145					
29	4.96	58.44	0.87	477.36	415.99
1.148					
30	8.42	60.35	3.00	408.85	339.04
1.206					
31	11.88	62.42	1.19	320.17	248.45
1.289					
32	11.88	63.89	1.81	218.89	161.98
1.351					
33	15.34	65.39	1.27	106.34	59.42
1.790					
34	15.34	66.22	0.46	43.20	7.35
5.875					

TABLE 5A - Total Base Force Data on the 34 Slices

Slice No. Normal/Vert. *	Alpha (deg)	X-Coord. Slice Cntr	Base Leng.	Total Normal Force	Total Vert. Force	Total
1	-46.89	16.79	3.00	185.25	(ft)	(lbs)

9	-33.06	25.96	3.00	1911.09	2046.67
0.934					
10	-29.60	27.61	0.90	690.92	738.34
0.936					
11	-29.60	28.91	2.10	1660.55	1773.42
0.936					
12	-26.15	31.17	3.00	2474.13	2637.18
0.938					
13	-22.69	33.26	1.61	1359.02	1441.17
0.943					
14	-22.69	34.50	1.08	875.05	928.31
0.943					
15	-22.69	35.14	0.31	240.03	254.71
0.942					
16	-19.23	36.70	3.00	2605.14	2738.76
0.951					
17	-15.78	38.56	0.92	886.95	921.03
0.963					
18	-15.78	40.00	2.08	1986.20	2062.56
0.963					
19	-12.32	42.47	3.00	2736.60	2797.29
0.978					
20	-8.86	44.47	1.08	940.03	941.76
0.998					
21	-8.86	45.50	1.01	868.67	870.20
0.998					
22	-8.86	46.45	0.91	795.41	796.91
0.998					
23	-5.41	48.39	3.00	2787.35	2727.75
1.022					
24	-1.95	49.94	0.12	113.26	107.83
1.050					
25	-1.95	51.44	2.88	2540.05	2414.88
1.052					
26	1.51	54.38	3.00	2088.09	1911.27
1.093					
27	4.96	56.44	1.12	621.89	543.18
1.145					
28	4.96	57.50	1.00	501.43	436.17
1.150					
29	4.96	58.44	0.87	416.92	361.95
1.152					
30	8.42	60.35	3.00	1226.56	1006.15
1.219					
31	11.88	62.42	1.19	380.26	288.76
1.317					
32	11.88	63.89	1.81	396.70	287.28
1.381					
33	15.34	65.39	1.27	135.24	72.88
1.856					

34
15.34
66.22
0.46
20.02
3.29
6.092
TABLE 6 - Effective and Base Shear Stress Data on the 34 Slices

Slice Alpha X-Coord. Base Effective Available Mobilized

No. (deg) Slice Cntr Leng. Normal Stress Shear Strength Shear Stress

*		(ft)	(ft)	(psf)	(psf)	(psf)
1	-46.89	16.79	3.00	61.75	225.81	
64.97						
2	-43.43	18.41	1.64	213.06	328.26	
94.44						
3	-43.43	19.49	1.36	302.75	388.98	
111.91						
4	-39.98	20.49	1.32	398.71	453.95	
130.60						
5	-39.98	21.64	1.68	456.58	493.12	
141.88						
6	-36.52	22.64	0.89	504.73	525.73	
151.26						
7	-36.52	23.50	1.24	500.61	522.94	
150.45						
8	-36.52	24.35	0.87	512.66	531.10	
152.80						
9	-33.06	25.96	3.00	637.03	615.30	
177.03						
10	-29.60	27.61	0.90	764.01	701.27	
201.76 (210.90						
11	-29.60	28.91	2.10	792.38	720.48	
207.29 ($20.10{ }^{\text {a }}$						
12	-26.15	31.17	3.00	824.71	742.37	
13	-22.69	33.26	1.61	844.36	755.68	
217.41						
14	-22.69	34.50	1.08	807.32	730.60	
15	-22.69	35.14	0.31	782.91	714.07	
205.44						
16	-19.23	36.70	3.00	868.38	771.94	
222.09						
17	-15.78	38.56	0.92	964.88	837.27	
240.89						
18	-15.78	40.00	2.08	954.55	830.28	
238.88						
19	-12.32	42.47	3.00	912.20	801.60	
230.63						

20	-8.86	44.47	1.08	870.71	773.52
222.55					
21	-8.86	45.50	1.01	858.30	765.11
220.13					
22	-8.86	46.45	0.91	875.70	776.90
223.52					
23	-5.41	48.39	3.00	929.12	813.06
233.92					
24	-1.95	49.94	0.12	976.80	845.34
243.21					
25	-1.95	51.44	2.88	880.72	780.29
224.50					
26	1.51	54.38	3.00	696.03	655.25
188.52					
27	4.96	56.44	1.12	553.84	558.98
160.82					
28	4.96	57.50	1.00	499.55	522.22
150.25					
29	4.96	58.44	0.87	477.36	507.20
145.92					
30	8.42	60.35	3.00	408.85	460.82
132.58					
31	11.88	62.42	1.19	320.17	400.77
115.30					
32	11.88	63.89	1.81	218.89	332.20
95.58					
33	15.34	65.39	1.27	106.34	256.00
73.65					
34	15.34	66.22	0.46	43.20	213.25
61.35					

TABLE 6A - Effective and Base Shear Force Data on the 34 Slices
Slice Alpha X-Coord. Base Effective Available Mobilized

No. (deg) Slice Cntr Leng. Normal Force Shear Force Shear
(lbs)

1	-46.89	16.79	3.00	185.25	677.42
194.90 2	-43.43	18.41	1.64	348.86	537.47
154.63 3	-43.43	19.49	1.36	412.54	530.04
152.50 4	-39.98	20.49	1.32	525.74	598.58
172.21 5	-39.98	21.64	1.68	767.69	829.14

238.55					
6	-36.52	22.64	0.89	446.86	465.45
133.91					
7	-36.52	23.50	1.24	622.91	650.69
187.21					
8	-36.52	24.35	0.87	446.20	462.25
132.99					
9	-33.06	25.96	3.00	1911.09	1845.91
531.08					
10	-29.60	27.61	0.90	690.92	634.19
182.46					
11	-29.60	28.91	2.10	1660.55	1509.88
434.40					
12	-26.15	31.17	3.00	2474.13	2227.11
640.75					
13	-22.69	33.26	1.61	1359.02	1216.28
349.93					
14	-22.69	34.50	1.08	875.05	791.89
227.83					
15	-22.69	35.14	0.31	240.03	218.92
62.99					
16	-19.23	36.70	3.00	2605.14	2315.81
666.27					
17	-15.78	38.56	0.92	886.95	769.65
221.43					
18	-15.78	40.00	2.08	1986.20	1727.62
497.05					
19	-12.32	42.47	3.00	2736.60	2404.81
691.88					
20	-8.86	44.47	1.08	940.03	835.09
240.26					
21	-8.86	45.50	1.01	868.67	774.36
222.79 ($21.81{ }^{\text {2 }}$					
22	-8.86	46.45	0.91	795.41	705.66
203.02					
23	-5.41	48.39	3.00	2787.35	2439.18
701.77					
24	-1.95	49.94	0.12	113.26	98.01
28.20					
25	-1.95	51.44	2.88	2540.05	2250.41
647.46					
26	1.51	54.38	3.00	2088.09	1965.74
565.56					
27	4.96	56.44	1.12	621.89	627.66
180.58					
28	4.96	57.50	1.00	501.43	524.19
150.81					
29	4.96	58.44	0.87	416.92	442.97
127.45					
30	8.42	60.35	3.00	1226.56	1382.45

397.74

31
136.95

32
173.21

33
93.67

34
28.43
11.88
11.88
15.34
15.34
66.22
62.42
63.89
65.39
1.27
0.46
1.19
1.81 20.02
475.99
602.05
325.57
98.83

Average Effective Normal Stress $=628.2132$ (psf)
Average Available Shear Strength $=609.3323(\mathrm{psf})$
Total Length of Failure Surface $=55.7352(\mathrm{ft})$

SUM OF MOMENTS $=-0.563805 E-04$ (ft/lbs); Imbalance (Fraction of Total Weight) = -0.1599960E-08

SUM OF FORCES $=-.314786 E-04$ (lbs); Imbalance (Fraction of Total Weight) = -0.8932980E-09

Sum of Available Shear Forces $=33961.28(1 \mathrm{lb})$
Sum of Mobilized Shear Forces $=9770.87$ (lbs)

FS Balance Check: FS $=3.475767$
**** END OF GEOSTASE OUTPUT $* * * *$

18021 West Kenwood Ave, San Bernardino, Ca.

Project No. 20229-01


```
        *** GEOSTASE(R) ***
** GEOSTASE(R) (c)Copyright by Garry H. Gregory, Ph.D., P.E.,D.GE **
    ** Current Version 4.30.31-Double Precision, August 2019 **
    (All Rights Reserved-Unauthorized Use Prohibited)
```

SLOPE STABILITY ANALYSIS SOFTWARE

Options. | Simplified Bishop, Simplified Janbu, or General Equilibrium (GE) |
| :--- |

(Spencer, Morgenstern-Price, USACE, and Lowe \& Karafiath)
Including Pier/Pile, Planar Reinf, Nail, Tieback, Line Loads
Applied Forces, Fiber-Reinforced Soil (FRS), Distributed Loads
Nonlinear Undrained Shear Strength, Curved Strength Envelope,
Anisotropic Strengths, Water Surfaces, 3-Stage Rapid Drawdown
2- or 3-Stage Pseudo-Static \& Simplified Newmark Seismic Analyses.

Analysis Date:	10/ 6/ 2020
Analysis Time:	GeoMat

Input File Name: C:\Users\Abdullah\OneDrive - Geomat Testing Laboratories \GeoMat Reports \ANNUAL REPORTS $\backslash 2020$ REPORTS $\backslash 20229$. San Bernardino Kimbark Elementary School\Geostatse $2 \backslash$ Proposed Seismic.gsd

Output File Name: C:\Users\Abdullah\OneDrive - Geomat Testing Laboratories \GeoMat Reports \ANNUAL REPORTS $\backslash 2020$ REPORTS $\backslash 20229 . S a n ~ B e r n a r d i n o ~ K i m b a r k ~$ Elementary School\Geostatse $2 \backslash$ Proposed Seismic.OUT

Unit System: English

PROJECT: 18021 West Kenwood Ave, San Bernardino, Ca.

DESCRIPTION: Project No. 20229-01

BOUNDARY DATA
18 Surface Boundaries

18 Total Boundaries

Boundary No.	$\begin{aligned} & x-1 \\ & (f t) \end{aligned}$	$\begin{aligned} & Y-1 \\ & (f t) \end{aligned}$	$\begin{aligned} & x-2 \\ & (f t) \end{aligned}$	$\begin{aligned} & Y-2 \\ & (f t) \end{aligned}$	Soil Type Below Bnd
1	0.000	124.000	10.000	124.000	1
2	10.000	124.000	19.000	124.000	1
3	19.000	124.000	21.000	124.000	1
4	21.000	124.000	23.000	123.000	1
5	23.000	123.000	24.000	122.000	1
6	24.000	122.000	28.000	122.000	1
7	28.000	122.000	34.000	119.000	1
8	34.000	119.000	35.000	118.000	1
9	35.000	118.000	39.000	118.000	1
10	39.000	118.000	45.000	115.000	1
11	45.000	115.000	46.000	115.000	1
12	46.000	115.000	50.000	115.000	1
13	50.000	115.000	57.000	111.000	1
14	57.000	111.000	58.000	111.000	1
15	58.000	111.000	63.000	110.000	1
16	63.000	110.000	66.000	109.000	1
17	66.000	109.000	70.000	109.000	1
18	70.000	109.000	100.000	109.000	1
User Spec	X-Origin $=$	0.000(ft)			
User Spec	Y-Orig		000(ft)		

MOHR-COULOMB SOIL PARAMETERS
1 Type(s) of Soil Defined

| | Soil Number | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WaterWater
 and | Moist | Saturated | Cohesion Friction | Pore | Pressure |
| SurfaceOption
 Description | (pcf) Unit Wt. Intercept | (pcf) | Angle | Pressure Constant | |

Drained Shear Strength Reduction Factor applied after first stage $=1.0000$
SEISMIC (EARTHQUAKE) DATA
Specified Peak Ground Acceleration Coefficient (PGA) $=0.000(\mathrm{~g})$
Default Velocity $=0.000(f t)$ per second

```
Specified Horizontal Earthquake Coefficient (kh) = -.47300(g)
Specified Vertical Earthquake Coefficient (kv) = 0.000(g)
(NOTE:Input Velocity = 0.0 will result in default Peak
Velocity = 2 times(PGA) times 2.5 fps or 0.762 mps)
Specified Seismic Pore-Pressure Factor = 0.000
Horizontal Seismic Force is Applied at Center of Gravity of Slices
```

TRIAL FAILURE SURFACE DATA

Circular Trial Failure Surfaces Have Been Generated Using A Random Procedure.

1000 Trial Surfaces Have Been Generated.

1000 Surfaces Generated at Increments of 0.3003 (in) Equally Spaced Within the Start Range

Along The Specified Surface Between $X=0.00(f t)$
and $X=25.00(f t)$

Each Surface Enters within a Range Between $X=50.00(f t)$ and $X=70.00(f t)$

Unless XCLUDE Lines Were Specified, The Minimum Elevation To Which A Surface Extends Is $Y=$ 90.00(ft)

Specified Maximum Radius $=10000.000(f t)$
$3.000(f t)$ Line Segments Were Used For Each Trial Failure Surface.

Restrictions Have Been Imposed Upon The Angle Of Initiation. The Angle Has Been Restricted Between The Angles Of -60.0 And -30.0 deg.

The Spencer Method Was Selected for FS Analysis.

Selected fx function = Constant (1.0)

SELECTED CONVERGENCE PARAMETERS FOR SPENCER METHOD:
Initial estimate of $\mathrm{FS}=1.500$
FS tolerance $=0.000001000$
Initial estimate of theta(deg) $=15.00$
Theta tolerance(radians) $=0.0001000$
Minimum theta $(\mathrm{deg})=-45.00$; Maximum theta $(\mathrm{deg})=45.00$
Theta convergence Step Factor $=5000.00$
Maximum number of iterations $=50$
Allowable negative side force $=-1000.0(l b s)$

```
Maximum force imbalance = 100.000000(lbs)
Maximum moment imbalance = 100.000000 (ft/lbs)
    Selected Lambda Coefficient = 1.00
    Specified Tension Crack Water Depth Factor = 0.000
    Total Number of Trial Surfaces Attempted = 1000
    Number of Trial Surfaces With Valid FS = 1000
Statistical Data On All Valid FS Values:
        FS Max = 2.695 FS Min = 1.283 FS Ave = 1.465
        Standard Deviation = 0.129 Coefficient of Variation = 8.83 %
Critical Surface is Sequence Number 282 of Those Analyzed.
    *****BEGINNING OF DETAILED GEOSTASE OUTPUT FOR CRITICAL SURFACE FROM A
    BACK-CALCULATED CIRCULAR SURFACE PARAMETERS:
    Circle Center At X = 51.794006(ft) ; Y = 176.274798(ft); and Radius
```

SEARCH*****
$=68.804426(f t)$

Circular Trial Failure Surface Generated With 23 Coordinate Points
Point X-Coord. Y-Coord.
No. (ft) (ft)

1	7.057	124.000
2	9.378	122.100
3	11.780	120.302
4	14.258	118.611
5	16.808	117.030
6	19.423	115.561
7	22.101	114.207
8	24.835	112.972
9	27.620	111.857
10	30.451	110.864
11	33.322	109.996
12	36.229	109.254
13	39.165	108.639
14	42.126	108.153
15	45.104	107.796
16	48.096	107.570
17	51.094	107.474

18	54.094	107.509			
19	57.090	107.674			
20	60.075	107.971			
21	63.045	108.396			
22	65.993	108.951			
23	66.201	109.000			
Iter. No.	$\begin{aligned} & \text { Theta } \\ & (\mathrm{deg}) \\ & (f x=1.0) \end{aligned}$	FS (Moment)	$\begin{gathered} \text { FS } \\ \text { (Force) } \end{gathered}$	Lambda	Delta FS
1	-15.0000	1.933293	1.228820	-0.268	$0.7044728 \mathrm{E}+00$
2	-19.9500	1.516537	1.243255	-0.363	$0.2732826 \mathrm{E}+00$
3	-23.0856	1.405285	1.253790	-0.426	$0.1514950 \mathrm{E}+00$
4	-26.9847	1.323050	1.268902	-0.509	0.5414817E-01
5	-29.1523	1.292366	1.278528	-0.558	0.1383761E-01
6	-29.8958	1.283569	1.282072	-0.575	0.1496761E-02
7	-29.9858	1.282557	1.282511	-0.577	0.4605246E-04
8	-29.9887	1.282525	1.282525	-0.577	0.2395647E-06
Factor Of Safety For The Preceding Specified Surface $=1.283$					
Theta $(f x=1.0)=-29.99$ Deg Lambda $=-0.577$					
The Spencer Method Has Been Selected For Analysis.					
Selected fx function $=$ Constant (1.0)					
SELECTED CONVERGENCE PARAMETERS FOR ANALYSIS METHOD:					
Initial estimate of FS $=1.500$					
FS tolerance $=0.000001000$					
Initial estimate of theta(deg) = 15.00					
Theta tolerance(radians) $=0.0001000$					
Minimum theta(deg) = -45.00 ; Maximum theta(deg) = 45.00					
Theta convergence Step Factor $=5000.00$					
Maximum number of iterations $=50$					
Maximum force imbalance $=100.000000(l b s)$					
Maximum moment imbalance(if Applicable) = 100.000000 (ft/lbs)					
Selected Lambda Coefficient $=1.00$					
Tension Crack Water Force $=\quad 0.00$ (lbs)					
Specified Tension Crack Water Depth Factor $=0.000$					
Depth of Tension Crack (zo) at Side of First Slice $=0.000(\mathrm{ft})$					

Depth of Water in Tension Crack $=0.000(f t)$
Theoretical Tension Crack Depth $=5.780(f t)$
NOTE: In Table 1 following, when a tension crack with water is present on the first slice (right facing slope) or on the last slice (left facing slope), the "side force" in the tension crack is set equal to the water pressure resultant.
*** Table 1 - Line of Thrust(if applicable) and Slice Force Data

	Slice	X	Y		Side Force	$f x$	Force Angle
Vert.							
	No.	Coord.	Coord.	h/H	(lbs)		(Deg)
Force(l							
	1	7.06	124.00	0.000	0.00	1.000	0.00
0.0							
	2	9.38	123.05	0.500	-216.45	1.000	-29.99
108.2							
	3	10.00	122.26	0.266	-215.74	1.000	-29.99
107.8							
	4	11.78	116.16	0.000-	-85.50	1.000	-29.99
42.7							
	5	14.26	124.38	1.000+	358.15	1.000	-29.99
-179.0							
	6	16.81	122.00	0.713	1073.29	1.000	-29.99
-536.5							
	7	19.00	120.91	0.623	1843.00	1.000	-29.99
-921.2							
	8	19.42	120.71	0.610	2012.80	1.000	-29.99
-1006. 1							
	9	21.00	120.12	0.580	2639.34	1.000	-29.99
-1319.2							
	10	22.10	119.68	0.592	3104.93	1.000	-29.99
-1551.9							
	11	23.00	119.35	0.604	3445.02	1.000	-29.99
-1721.9							
	12	24.00	118.94	0.646	3805.73	1.000	-29.99
-1902.2							
	13	24.83	118.58	0.621	4102.55	1.000	-29.99
-2050.6							
	14	27.62	117.59	0.565	5080.12	1.000	-29.99
-2539.2							
	15	28.00	117.48	0.561	5205.20	1.000	-29.99
-2601.7							

	16	30.45	116.71	0.590	5997.20	1.000	-29.99
-2997.6							
	17	33.32	115.79	0.620	6694.34	1.000	-29.99
-3346.0							
	18	34.00	115.58	0.628	6807.00	1.000	-29.99
-3402.3							
	19	35.00	115.25	0.674	6956.18	1.000	-29.99
-3476.9							
	20	36.23	114.82	0.637	7129.63	1.000	-29.99
-3563.6							
	21	39.00	114.05	0.577	7386.58	1.000	-29.99
-3692.0							
	22	39.17	114.01	0.579	7403.27	1.000	-29.99
-3700.4							
	23	42.13	113.28	0.619	7446.49	1.000	-29.99
-3722.0							
	24	45.00	112.54	0.658	7215.74	1.000	-29.99
-3606.6							
	25	45.10	112.51	0.655	7206.46	1.000	-29.99
-3602.0							
	26	46.00	112.31	0.630	7060.74	1.000	-29.99
-3529.2							
	27	48.10	111.85	0.577	6721.39	1.000	-29.99
-3359.5							
	28	50.00	111.60	0.546	6249.07	1.000	-29.99
-3123.5							
	29	51.09	111.45	0.576	5978.43	1.000	-29.99
-2988.2							
	30	54.09	111.04	0.685	4995.43	1.000	-29.99
-2496.9							
	31	57.00	110.53	0.860	3900.38	1.000	-29.99
-1949.5							
	32	57.09	110.51	0.853	3868.84	1.000	-29.99
-1933.8							
	33	58.00	110.36	0.802	3482.54	1.000	-29.99
-1740.7							
	34	60.07	109.99	0.774	2633.32	1.000	-29.99
-1316.2							
	35	63.00	109.56	0.728	1338.96	1.000	-29.99
-669.3							
	36	63.04	109.56	0.730	1320.63	1.000	-29.99
-660.1							
	37	65.99	109.09	$1.000+$	83.71	1.000	-29.99
-41.8							
	38	66.00	109.09	$1.000+$	80.79	1.000	-29.99
-40.4							

NOTE: A value of 0.000 - for h / H indicates that the line of thrust is at or below
indicates that
the line of thrust is at or above the upper boundary of the sliding mass.

Table 2 - Geometry Data on the 38 Slices

Slice	Width	Height	X-Cntr	Y-Cntr-Base	Y-Cntr-Top	Alpha	Beta	Base
Length No.	(ft)	(ft)	(ft)	(ft)	(ft)	(deg)	(deg)	

1	2.32	0.95	8.22	123.05	124.00	-39.31	0.00
3.00							
2	0.62	2.13	9.69	121.87	124.00	-36.81	0.00
0.78							
3	1.78	3.03	10.89	120.97	124.00	-36.81	0.00
2.22							
4	2.48	4.54	13.02	119.46	124.00	-34.31	0.00
3.00							
5	2.55	6.18	15.53	117.82	124.00	-31.81	0.00
3.00							
6	2.19	7.59	17.90	116.41	124.00	-29.31	0.00
2.51							
7	0.42	8.32	19.21	115.68	124.00	-29.31	0.00
0.49							
8	1.58	8.84	20.21	115.16	124.00	-26.82	0.00
1.77							
9	1.10	9.24	21.55	114.49	123.72	-26.82	-26.57
1.23							
10	0.90	9.22	22.55	114.00	123.22	-24.32	-26.57
0.99							
11	1.00	8.92	23.50	113.58	122.50	-24.32	-45.00
1.10							
12	0.83	8.84	24.42	113.16	122.00	-24.32	0.00
0.92							
13	2.79	9.59	26.23	112.41	122.00	-21.82	0.00
3.00							
14	0.38	10.21	27.81	111.79	122.00	-19.32	0.00
0.40							
15	2.45	10.09	29.23	111.29	121.39	-19.32	-26.57
2.60							
16	2.87	9.63	31.89	110.43	120.06	-16.82	-26.57
3.00							
17	0.68	9.26	33.66	109.91	119.17	-14.32	-26.57
0.70							
18	1.00	8.80	34.50	109.70	118.50	-14.32	-45.00
1.03							
19	1.23	8.59	35.61	109.41	118.00	-14.32	0.00
1.27							

20	2.77	9.04	37.61	108.96	118.00	-11.83	0.00
2.83							
21	0.17	9.30	39.08	108.66	117.96	-11.83	-26.57
0.17							
22	2.96	8.78	40.65	108.40	117.18	-9.33	-26.57
3.00							
23	2.87	7.74	43.56	107.98	115.72	-6.83	-26.57
2.89							
24	0.10	7.20	45.05	107.80	115.00	-6.83	0.00
0.11							
25	0.90	7.24	45.55	107.76	115.00	-4.33	0.00
0.90							
26	2.10	7.35	47.05	107.65	115.00	-4.33	0.00
2.10							
27	1.90	7.46	49.05	107.54	115.00	-1.83	0.00
1.91							
28	1.09	7.20	50.55	107.49	114.69	-1.83	-29.74
1.09							
29	3.00	6.03	52.59	107.49	113.52	0.67	-29.74
3.00							
30	2.91	4.24	55.55	107.59	111.83	3.16	-29.74
2.91							
31	0.09	3.33	57.04	107.67	111.00	3.16	0.00
0.09							
32	0.91	3.28	57.54	107.72	111.00	5.66	0.00
0.91							
33	2.07	2.92	59.04	107.87	110.79	5.66	-11.31
2.09							
34	2.93	2.11	61.54	108.18	110.29	8.16	-11.31
2.95							
35	0.04	1.60	63.02	108.39	109.99	8.16	-18.43
0.05							
36	2.95	0.82	64.52	108.67	109.49	10.66	-18.43
3.00							
37	0.01	0.05	66.00	108.95	109.00	13.16	-18.43
0.01							
38	0.20	0.02	66.10	108.98	109.00	13.16	0.00
0.21							

Table 2A - Coordinates of Slice Points Defining the Slip Surface

Point
No.
1
2
3
4

X-Pt
(ft)
7.057057
9.378318
10.000000
11.780217

Y-Pt
(ft)
124.000000
122.099540
121.634303
120.302075

5	14.258186	118.611020
6	16.807516	117.029590
7	19.000000	115.798510
8	19.423359	115.560794
9	21.000000	114.763828
10	22.100743	114.207421
11	23.000000	113.801062
12	24.000000	113.349178
13	24.834577	112.972047
14	27.619665	111.857018
15	28.000000	111.723673
16	30.450710	110.864456
17	33.322332	109.996247
18	34.000000	109.823211
19	35.000000	109.567871
20	36.229071	109.254041
21	39.000000	108.673880
22	39.165401	108.639249
23	42.125739	108.153041
24	45.000000	107.808850
25	45.104457	107.796341
26	46.000000	107.728530
27	48.095894	107.569827
28	50.000000	107.508929
29	51.094361	107.473929
30	54.094158	107.508830
31	57.000000	107.669509
32	57.089582	107.674463
33	58.000000	107.764747
34	60.074938	107.970513
35	63.000000	108.390029
36	63.044552	108.396419
37	65.992777	108.951369
38	66.000000	108.953058
39	66.200791	109.000000

***Table 3 - Force and Pore Pressure Data On The
38 Slices (Excluding Reinforcement)***

		Ubeta Force	Ubeta Stress	Ualpha Force	Earthquake Force			
Distributed								
Slice No.	Weight (lbs)	$\begin{gathered} \text { Top } \\ \text { (lbs) } \end{gathered}$	$\begin{gathered} \text { Top } \\ \text { (psf) } \end{gathered}$	$\begin{aligned} & \text { Bot } \\ & \text { (lbs) } \end{aligned}$	Pressure (psf)	Hor (lbs)	Ver (lbs)	Load
(lbs)								
1	264.7	0.0	0.0	0.0	0.0	-125.2	0.0	
0.00								
2	159.1	0.0	0.0	0.0	0.0	-75.3	0.0	

0.00

3
0.00

4
0.00

5
0.00

6
0.00

7
0.00

8
0.00

9
0.00

10
0.00 11
0.00 12
0.00

13
0.00

14
0.00

15
0.00

16
0.00

17
0.00 18
0.00 19
0.00 20
0.00 21
0.00 22
0.00 23
0.00 24
0.00

25
0.00

26
0.00 27
647.7
1351.0
1890.5
1995.8
422.7
1672.1
1220.4
995.0
1071.0
885.3
3203.6
466.0
2968.3
3317.2
753.0
1056.5
1266.8
3004.6
184.6
3119.4
2668.8
90.2
777.8
1848.8
1704.7
0.0
0.0
0.0
$0.0-306.3$
0.0
0.0
$0.0-639.0$
0.0
0.0
$0.0-894.2$
0.0
0.0
0.0 -944.0
0.0
0.0
$0.0-199.9$
0.0
0.0
$0.0-790.9$
0.0
0.0
$0.0-577.2$
0.0
0.0
$0.0-470.6$
0.0
0.0
$0.0-506.6$
0.0
0.0
$0.0-418.7$
0.0
0.0
$0.0-1515.3$
0.0
0.0
$0.0-220.4$
0.0
0.0
$0.0-1404.0$
0.0
0.0
$0.0-1569.0$
0.0
0.0
0.0 - 356.2
0.0
0.0
$0.0-499.7$
0.0
0.0
$0.0-599.2$
0.0
0.0
$0.0-1421.2$
0.0
0.0
$0.0 \quad-87.3$
0.0
0.0
$0.0-1475.5$
0.0
0.0
$0.0-1262.3$
0.0
0.0
$0.0 \quad-42.7$
0.0
0.0
$0.0-367.9$
0.0
0.0
$0.0-874.5$
0.0
0.0
$0.0-806.3$
0.0
0.00

28
0.00

29
0.00

30
0.00

31
0.00

32
0.00

33
0.00

34
0.00 35
0.00 36
0.00 37
0.00 38
0.00
945.0
0.0
0.0
0.0
$0.0-447.0$
0.0
2169.3
0.0
0.0
0.0
$0.0-1026.1$
0.0
1478.9
0.0
0.0
0.0
$0.0-699.5$
0.0
35.8
0.0
0.0
$0.0-16.9$
0.0
358.4
0.0
0.0
0.0
$0.0-169.5$
0.0
728.3
0.0
0.0
0.0
$0.0-344.5$
0.0
741.4
0.0
0.0
0.0
$0.0-350.7$
0.0
8.6
0.0
0.0
0.0
$0.0-4.0$
0.0
290.1
0.0
0.0
0.0
$0.0-137.2$
0.0
0.0
0.0
0.0
0.0
$0.0-0.0$
0.0
0.6
0.0
0.0
0.0
$0.0-0.3$
0.0

```
TOTAL WEIGHT OF SLIDING MASS = 45761.68(lbs)
```

EFFECTIVE WEIGHT OF SLIDING MASS = 45761.68(lbs)
TOTAL AREA OF SLIDING MASS $=381.35(\mathrm{ft} 2)$
TABLE 4 - SOIL STRENGTH \& SOIL OPTIONS DATA ON THE 38 SLICES

Slice	Soil	Cohesion (psf)	Phi(Deg)
No.	Type	Py	
1	1	184.00	34.10
2	1	184.00	34.10
3	1	184.00	34.10
4	1	184.00	34.10
5	1	184.00	34.10
6	1	184.00	34.10
7	1	184.00	34.10
8	1	184.00	34.10
9	1	184.00	34.10
10	1	184.00	34.10
11	1	184.00	34.10
12	1	184.00	34.10
13	1	184.00	34.10
14	1	184.00	34.10
15	1	184.00	34.10

16	1	184.00	34.10
17	1	184.00	34.10
18	1	184.00	34.10
19	1	184.00	34.10
20	1	184.00	34.10
21	1	184.00	34.10
22	1	184.00	34.10
23	1	184.00	34.10
24	1	184.00	34.10
25	1	184.00	34.10
26	1	184.00	34.10
27	1	184.00	34.10
28	1	184.00	34.10
29	1	184.00	34.10
30	1	184.00	34.10
31	1	184.00	34.10
32	1	184.00	34.10
33	1	184.00	34.10
34	1	184.00	34.10
35	1	184.00	34.10
36	1	184.00	34.10
37	1	184.00	34.10
38	1	184.00	34.10

SOIL OPTIONS:
A = ANISOTROPIC SHEAR STRENGTH
C = CURVED STRENGTH ENVELOPE (TANGENT PHI \& C)
F = FIBER-REINFORCED SOIL (FRS)
$M=$ INDEPENDENT MULTI-STAGE SHEAR STRENGTH
$N=$ NONLINEAR UNDRAINED SHEAR STRENGTH
R = RAPID DRAWDOWN OR RAPID LOADING (SEISMIC) SHEAR STRENGTH
NOTE: Phi and C in Table 4 are modified values based on specified Soil Options (if any).

Slice No.	Alpha (deg)	X-Coord. Slice Cntr	Base Leng.	Total Normal Stress	Total Vert. Stress	Total
Normal/		(ft)		(psf)	(psf)	Stress
Ratio						
1	-39.31	8.22	3.00	30.15	114.03	
0.264						
2	-36.81	9.69	0.78	106.11	255.97	
0.415						
3	-36.81	10.89	2.22	157.62	363.82	
0.433						

4	-34.31	13.02	3.00	263.05	545.21
0.482					
5	-31.81	15.53	3.00	385.96	741.56
0.520					
6	-29.31	17.90	2.51	504.69	910.31
0.554					
7	-29.31	19.21	0.49	553.38	998.44
0.554					
8	-26.82	20.21	1.77	623.10	1060.52
0.588					
9	-26.82	21.55	1.23	651.04	1108.70
0.587					
10	-24.32	22.55	0.99	688.39	1106.47
0.622					
11	-24.32	23.50	1.10	666.80	1070.99
0.623					
12	-24.32	24.42	0.92	660.55	1060.73
0.623					
13	-21.82	26.23	3.00	757.32	1150.26
0.658					
14	-19.32	27.81	0.40	852.66	1225.16
0.696					
15	-19.32	29.23	2.60	843.28	1211.19
0.696					
16	-16.82	31.89	3.00	854.12	1155.17
0.739					
17	-14.32	33.66	0.70	873.67	1111.16
0.786					
18	-14.32	34.50	1.03	833.04	1056.54
0.788					
19	-14.32	35.61	1.27	813.82	1030.69
0.790					
20	-11.83	37.61	2.83	907.62	1084.32
0.837					
21	-11.83	39.08	0.17	932.67	1116.25
0.836					
22	-9.33	40.65	3.00	941.26	1053.73
0.893					
23	-6.83	43.56	2.89	894.89	928.51
0.964					
24	-6.83	45.05	0.11	837.95	863.69
0.970					
25	-4.33	45.55	0.90	902.88	868.51
1.040					
26	-4.33	47.05	2.10	915.57	882.10
1.038					
27	-1.83	49.05	1.91	997.82	895.27
1.115					
28	-1.83	50.55	1.09	966.22	863.51
1.119					

29	0.67	52.59	3.00	894.09	723.14
1.236					
30	3.16	55.55	2.91	726.42	508.93
1.427					
31	3.16	57.04	0.09	600.83	399.36
1.504					
32	5.66	57.54	0.91	654.21	393.65
1.662					
33	5.66	59.04	2.09	601.26	350.99
1.713					
34	8.16	61.54	2.95	535.79	253.47
2.114					
35	8.16	63.02	0.05	452.44	191.92
2.357					
36	10.66	64.52	3.00	372.06	98.39
3.782					
37	13.16	66.00	0.01	275.98	5.88
46.944					
38	13.16	66.10	0.21	270.88	2.82
96.176					

Slice No.	Alpha (deg)	X-Coord. Slice Cntr	Base Leng.	Total Normal Force	Total Vert. Force	Total
Normal/Vert.		(ft)			(lbs)	Force
Ratio						
1	-39.31	8.22	3.00	90.44	264.69	
0.342						
2	-36.81	9.69	0.78	82.39	159.13	
0.518						
3	-36.81	10.89	2.22	350.47	647.67	
0.541						
4	-34.31	13.02	3.00	789.16	1351.02	
0.584						
5	-31.81	15.53	3.00	1157.88	1890.49	
0.612						
6	-29.31	17.90	2.51	1269.02	1995.85	
0.636						
7	-29.31	19.21	0.49	268.68	422.70	
0.636						
8	-26.82	20.21	1.77	1100.79	1672.06	
0.658						
9	-26.82	21.55	1.23	802.98	1220.40	
0.658						
10	-24.32	22.55	0.99	679.31	995.00	
0.683						

11	-24.32	23.50	1.10	731.72	1070.99
0.683					
12	-24.32	24.42	0.92	604.96	885.26
0.683					
13	-21.82	26.23	3.00	2271.96	3203.56
0.709					
14	-19.32	27.81	0.40	343.65	465.97
0.737					
15	-19.32	29.23	2.60	2189.98	2968.28
0.738					
16	-16.82	31.89	3.00	2562.37	3317.20
0.772					
17	-14.32	33.66	0.70	611.06	753.00
0.811					
18	-14.32	34.50	1.03	859.77	1056.54
0.814					
19	-14.32	35.61	1.27	1032.33	1266.79
0.815					
20	-11.83	37.61	2.83	2569.48	3004.59
0.855					
21	-11.83	39.08	0.17	157.61	184.63
0.854					
22	-9.33	40.65	3.00	2823.77	3119.39
0.905					
23	-6.83	43.56	2.89	2590.52	2668.79
0.971					
24	-6.83	45.05	0.11	88.15	90.22
0.977					
25	-4.33	45.55	0.90	810.88	777.79
1.043					
26	-4.33	47.05	2.10	1924.42	1848.78
1.041					
27	-1.83	49.05	1.91	1900.93	1704.70
1.115					
28	-1.83	50.55	1.09	1057.93	944.99
1.120					
29	0.67	52.59	3.00	2682.27	2169.28
1.236					
30	3.16	55.55	2.91	2114.10	1478.87
31	3.16	57.04	0.09	53.91	35.78
1.507					
32	5.66	57.54	0.91	598.52	358.38
1.670					
33	5.66	59.04	2.09	1253.69	728.27
1.721					
34	8.16	61.54	2.95	1583.25	741.41
2.135					
35	8.16	63.02	0.05	20.36	8.55
2.382					

36	10.66	64.52	3.00	1116.19	290.06
3.848					
37 48.210 38	13.16	66.00	0.01	2.05	0.04
98.769	13.16	66.10	0.21	55.86	0.57

TABLE 6 - Effective and Base Shear Stress Data on the 38 Slices
Slice Alpha X-Coord. Base Effective Available Mobilized

No. (deg) Slice Cntr Leng. Normal Stress Shear Strength Shear Stress

*		(ft)	(ft)	(psf)	(psf)	(psf)
1	-39.31	8.22	3.00	30.15	204.41	
159.38						
2	-36.81	9.69	0.78	106.11	255.84	
199.48						
3	-36.81	10.89	2.22	157.62	290.72	
226.67						
4	-34.31	13.02	3.00	263.05	362.10	
282.33						
5	-31.81	15.53	3.00	385.96	445.32	
347.22						
6	-29.31	17.90	2.51	504.69	525.70	
409.89						
7	-29.31	19.21	0.49	553.38	558.67	
435.60						
8	-26.82	20.21	1.77	623.10	605.87	
472.41						
9	-26.82	21.55	1.23	651.04	624.79	
487.15						
10	-24.32	22.55	0.99	688.39	650.08	
506.87						
11	-24.32	23.50	1.10	666.80	635.46	
495.47						
12	-24.32	24.42	0.92	660.55	631.23	
492.18						
13	-21.82	26.23	3.00	757.32	696.74	
543.26						
14	-19.32	27.81	0.40	852.66	761.30	
593.59						
15	-19.32	29.23	2.60	843.28	754.95	
588.64						
16	-16.82	31.89	3.00	854.12	762.29	
594.36						
17	-14.32	33.66	0.70	873.67	775.52	
604.68						

18	-14.32	34.50	1.03	833.04	748.01
583.23					
19	-14.32	35.61	1.27	813.82	735.00
573.08					
20	-11.83	37.61	2.83	907.62	798.50
622.60					
21	-11.83	39.08	0.17	932.67	815.46
635.83					
22	-9.33	40.65	3.00	941.26	821.28
640.36					
23	-6.83	43.56	2.89	894.89	789.89
615.88					
24	-6.83	45.05	0.11	837.95	751.33
585.82					
25	-4.33	45.55	0.90	902.88	795.30
620.10					
26	-4.33	47.05	2.10	915.57	803.89
626.80					
27	-1.83	49.05	1.91	997.82	859.58
670.22					
28	-1.83	50.55	1.09	966.22	838.18
653.54					
29	0.67	52.59	3.00	894.09	789.34
615.46					
30	3.16	55.55	2.91	726.42	675.83
526.95					
31	3.16	57.04	0.09	600.83	590.79
460.65					
32	5.66	57.54	0.91	654.21	626.93
488.83					
33	5.66	59.04	2.09	601.26	591.08
460.87					
34	8.16	61.54	2.95	535.79	546.76
426.31					
35	8.16	63.02	0.05	452.44	490.33
382.31					
36	10.66	64.52	3.00	372.06	435.91
339.88					
37	13.16	66.00	0.01	275.98	370.85
289.16					
38	13.16	66.10	0.21	270.88	367.40
286.47					

TABLE 6A - Effective and Base Shear Force Data on the 38 Slices
Slice Alpha X-Coord. Base Effective Available Mobilized

No. (deg) Slice Cntr Leng. Normal Force Shear Force Shear Force
(lbs)

1	-39.31	8.22	3.00	90.44	613.23
478.15					
2	-36.81	9.69	0.78	82.39	198.66
154.90					
3	-36.81	10.89	2.22	350.47	646.41
504.01					
4	-34.31	13.02	3.00	789.16	1086.30
847.00					
5	-31.81	15.53	3.00	1157.88	1335.95
1041.65					
6	-29.31	17.90	2.51	1269.02	1321.85
1030.66					
7	-29.31	19.21	0.49	268.68	271.25
211.50					
8	-26.82	20.21	1.77	1100.79	1070.35
834.56					
9	-26.82	21.55	1.23	802.98	770.60
600.84					
10	-24.32	22.55	0.99	679.31	641.50
500.19					
11	-24.32	23.50	1.10	731.72	697.32
543.71					
12	-24.32	24.42	0.92	604.96	578.10
450.75					
13	-21.82	26.23	3.00	2271.96	2090.23
1629.78					
14	-19.32	27.81	0.40	343.65	306.83
239.24					
15	-19.32	29.23	2.60	2189.98	1960.57
1528.68					
16	-16.82	31.89	3.00	2562.37	2286.86
1783.09					
17	-14.32	33.66	0.70	611.06	542.41
422.92					
18	-14.32	34.50	1.03	859.77	772.01
601.95					
19	-14.32	35.61	1.27	1032.33	932.35
726.96					
20	-11.83	37.61	2.83	2569.48	2260.58
1762.60					
21	-11.83	39.08	0.17	157.61	137.80
107.45					
22	-9.33	40.65	3.00	2823.77	2463.84
1921.08					
23	-6.83	43.56	2.89	2590.52	2286.56
1782.86					
24	-6.83	45.05	0.11	88.15	79.04

61.63

25
556.92

26
317.46
27
1276.83

28
715.57

29
1846.38

30
1533.57

31
41.33

32
447.22

33
960.97

34
1259.75

35
17.21

36
1019.64

37
-4.33
-4.33
-1.83
-1.83
45.55
0.90
810.88
714.26
$1924.42 \quad 1689.68$
47.05
2.10
49.05
1.91
1900.93
1637.56
50.55
1.09
1057.93 917.74
0.67
52.59
3.00
2682.27
2368.03
2114.10
1966.84
53.00
573.57
598.52
1232.47
1253.69
1615.66
20.36
22.07
1116.19
1307.72
2.05
2.75
2.14

38
13.16
66.10
0.21
55.86
75.76

Average Effective Normal Stress $=651.8026$ (psf)
Average Available Shear Strength $=625.3035(\mathrm{psf})$
Total Length of Failure Surface $=63.2136(\mathrm{ft})$

SUM OF MOMENTS $=-0.987489 \mathrm{E}-01$ (ft/lbs); Imbalance (Fraction of Total Weight) = $-0.2157894 \mathrm{E}-05$

SUM OF FORCES $=-.140345 E-02$ (lbs); Imbalance (Fraction of Total Weight) = -0.3066871E-07

Sum of Available Shear Forces $=39527.70(l \mathrm{lb})$
Sum of Mobilized Shear Forces $=30820.23(1 b s)$
FS Balance Check: FS $=1.282525$

```
                                    *** SEISMIC SLOPE DISPLACEMENT DATA ***
(Note: kv is set = zero for displacement calculations)
Seismic Yield Coefficient (ky) = 0.66809(g)
Calculated Newmark Seismic Displacement = 0.000(ft)
```

Average Elevation of Point of Application of kh on Sliding Mass = 114.584(ft)

Non-Symmetrical Sliding Resistance Has Been Specified for Downhill Sliding.

This report was generated by LimitState:GEO3.5.g.24265 - limitstate.com

About this Report

This report has been generated using LimitState:GEO, a software application capable of directly identifying the critical collapse mechanism for a wide variety of geotechnical stability problems, including those involving slopes, retaining walls, footings etc.

The software utilizes the Discontinuity Layout Optimization (DLO) procedure to obtain a solution (Smith and Gilbert 2007). The main steps involved are: (i) distribution of nodes across the problem domain; (ii) connection of every node to every other node with potential discontinuities (e.g. slip-lines); (iii) application of rigorous optimization techniques to identify the critical subset of potential discontinuities, and hence also the critical failure mechanism and margin of safety.

The accuracy of the DLO solution is controlled by the specified nodal density. Within the set of all possible discontinuities linking pairs of nodes, all potential translational failure mechanisms are considered, whether anticipated or not by the engineer. Failure mechanisms involving rotations along the edges of solid bodies in the problem can also be identified. Thus in this case the solution identified by the DLO procedure is guaranteed to be the most critical solution for the problem posed. This means that there is no need to prescribe any aspect of the collapse mechanism prior to an analysis, or to separately consider different failure modes. The critical mechanism and collapse load factor are determined according to the well established upper bound theorem of plasticity.

LimitState:GEO reports the solution to a problem both visually as a collapse mechanism and numerically in terms of an Adequacy Factor, which is defined as the factor by which specified loads must be increased, or material strengths decreased, in order for the system under consideration to reach a collapse state.

REFERENCE
Smith, C.C. and Gilbert, M. (2007) Application of discontinuity layout optimization to plane plasticity problems, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 463, 2086, pp 2461-2484.

Summary

Name	Date of Analysis	Name of Engineer	Organization
Access Ramp Stability Analysis	Mon Oct 52020	HMN	GeoMat Testing Laboratories, Inc.

Reference \#	Location	Map Reference	Tags
Project No. 20229-01	Kimbark Elementary School, San Bernardino, CA	Access Ramp	

Comments
Static Condition

Target Nodal Density	Nodal Spacing Scale Factor	Water	Model Translational Failures?	Model Rotational Failures?	Seismic Accelerations: Horiz. $/$ Vert. (g)
Fine (1000 nodes $)$	2.06269	Enabled	True	Along edges	None

Scenario	Partial Factor Set	Short / Long Term?*	Analysis Type	Adequacy Factor
$\mathbf{1}^{\star}$	User	Long Term	Factor Strength(s)	3.075

*This report provides details of this scenario, which has been identified as the most critical.
${ }^{* *}$ For Mohr Coulomb materials with Drainage Behaviour specified as 'drained/undrained', undrained properties are used in a short term analysis, and drained properties are used in a long term analysis.

Analysis Options

Factor Strength(s)

Solution Tolerance $(\%)$	Automatic Adequacy on Load(s)	Factor on Load(s)	Artificial Cohesion $\left(\mathbf{k N} / \mathbf{m}^{2}(\mathbf{k P a})\right)$
1	True	1	0.1

Geometry

(all distances in ft)

All Geometrical Objects

No. of Vertices (V)	No. of Boundaries (B)	No. of Solids (S)
101	114	14

Boundary Objects

ID	Start Vertex ID (x, y)	End Vertex ID (x, y)	Baseline Nodal Spacing	Support Type	Material(s)
B1	V1 (14.1076, 124.672)	V2 (14.1076, 124.672)	1.64042	Free	Frictionless
B2	V2 (14.1076, 124.672)	V3 (19.0289, 124.672)	1.64042	Free	-
B3	V3 (19.0289, 124.672)	V4 (19.0289, 124.672)	1.64042	Free	-
B4	V4 (19.0289, 124.672)	V6 (19.0289, 124.672)	1.64042	Free	-
B6*	V1 (14.1076, 124.672)	V6 (19.0289, 124.672)	1.64042	Free	-
B15	$\begin{gathered} \hline \text { V12 (65.6168, } \\ 108.268) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V15 (75.4593, } \\ 108.268) \end{gathered}$	1.64042	Free	-
B23	V21 (62.336, 108.268)	V22 (62.336, 108.268)	1.64042	Free	-
B24	V22 (62.336, 108.268)	V23 (62.336, 111.549)	1.64042	Free	-
B25*	V23 (62.336, 111.549)	$\begin{gathered} \text { V24 (59.0551, } \\ 111.549) \\ \hline \end{gathered}$	1.64042	Free	-

limitstate geo

B26	$\begin{gathered} \hline \text { V24 (59.0551, } \\ 111.549) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V25 (59.0551, } \\ 111.549) \\ \hline \end{gathered}$	1.64042	Free	-
B27	$\begin{gathered} \hline \mathrm{V} 25(59.0551, \\ 111.549) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V26 (59.0551, } \\ 111.549) \\ \hline \end{gathered}$	1.64042	Free	-
B28	$\begin{gathered} \hline \text { V26 (59.0551, } \\ 111.549) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V27 (59.0551, } \\ 111.549) \\ \hline \end{gathered}$	1.64042	Free	-
B29	$\begin{gathered} \text { V27 (59.0551, } \\ 111.549) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V} 28(55.7743, \\ 111.549) \\ \hline \end{gathered}$	1.64042	Free	-
B30	$\begin{gathered} \text { V28 (55.7743, } \\ 111.549) \end{gathered}$	$\begin{gathered} \hline \text { V29 (55.7743, } \\ 111.549) \end{gathered}$	1.64042	Free	-
B31	$\begin{gathered} \hline \text { V29 (55.7743, } \\ 111.549) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V30 (59.0551, } \\ 111.549) \\ \hline \end{gathered}$	1.64042	Free	-
B32	$\begin{gathered} \text { V30 (59.0551, } \\ 111.549) \end{gathered}$	$\begin{gathered} \hline \text { V31 (59.0551, } \\ 111.549) \end{gathered}$	1.64042	Free	-
B33	$\begin{gathered} \hline \text { V31 (59.0551, } \\ 111.549) \end{gathered}$	$\begin{gathered} \hline \text { V32 (59.0551, } \\ 108.268) \\ \hline \end{gathered}$	1.64042	Free	-
B34	$\begin{gathered} \text { V32 (59.0551, } \\ 108.268) \\ \hline \end{gathered}$	$\begin{gathered} \text { V33 (59.0551, } \\ 108.268) \\ \hline \end{gathered}$	1.64042	Free	-
B35	$\begin{gathered} \hline \text { V33 (59.0551, } \\ 108.268) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V34 (59.0551, } \\ 108.268) \\ \hline \end{gathered}$	1.64042	Free	-
B36	$\begin{gathered} \hline \text { V34 (59.0551, } \\ 108.268) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V35 (59.0551, } \\ 108.268) \\ \hline \end{gathered}$	1.64042	Free	-
B37	$\begin{gathered} \hline \text { V35 (59.0551, } \\ 108.268) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V36 (59.0551, } \\ 111.549) \\ \hline \end{gathered}$	1.64042	Free	-
B38	$\begin{gathered} \hline \text { V36 (59.0551, } \\ 111.549) \\ \hline \end{gathered}$	V37 (62.336, 111.549)	1.64042	Free	-
B39	V37 (62.336, 111.549)	V38 (62.336, 108.268)	1.64042	Free	-
B40	V38 (62.336, 108.268)	V39 (62.336, 108.268)	1.64042	Free	-
B41	V21 (62.336, 108.268)	V39 (62.336, 108.268)	1.64042	Free	-
B42	$\begin{gathered} \hline \text { V40 (49.2126, } \\ 111.549) \end{gathered}$	$\begin{gathered} \hline \text { V41 (49.2126, } \\ 111.549) \end{gathered}$	1.64042	Free	-
B43	$\begin{gathered} \hline \text { V41 (49.2126, } \\ 111.549) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V42 (49.2126, } \\ 114.829) \\ \hline \end{gathered}$	1.64042	Free	-
B44*	$\begin{gathered} \text { V42 (49.2126, } \\ 114.829) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V43 (45.9318, } \\ 114.829) \\ \hline \end{gathered}$	1.64042	Free	-
B45	$\begin{gathered} \hline \text { V43 (45.9318, } \\ 114.829) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V44 (45.9318, } \\ 114.829) \\ \hline \end{gathered}$	1.64042	Free	-
B46	$\begin{gathered} \hline \text { V44 (45.9318, } \\ 114.829) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V45 (45.9318, } \\ 114.829) \\ \hline \end{gathered}$	1.64042	Free	-
B47	$\begin{gathered} \text { V45 (45.9318, } \\ 114.829) \\ \hline \end{gathered}$	$\begin{gathered} \text { V46 (45.9318, } \\ 114.829) \\ \hline \end{gathered}$	1.64042	Free	-
B48	$\begin{gathered} \hline \text { V46 (45.9318, } \\ 114.829) \\ \hline \end{gathered}$	$\begin{gathered} \text { V47 (45.9318, } \\ 114.829) \\ \hline \end{gathered}$	1.64042	Free	-
B49	$\begin{gathered} \hline \text { V47 (45.9318, } \\ 114.829) \end{gathered}$	$\begin{gathered} \hline \text { V48 (45.9318, } \\ 111.549) \end{gathered}$	1.64042	Free	-
B50	$\begin{gathered} \hline \text { V48 (45.9318, } \\ 111.549) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V49 (45.9318, } \\ 111.549) \\ \hline \end{gathered}$	1.64042	Free	-
B51	$\begin{gathered} \hline \text { V49 (45.9318, } \\ 111.549) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V50 (45.9318, } \\ 114.829) \\ \hline \end{gathered}$	1.64042	Free	-
B52	$\begin{gathered} \text { V50 (45.9318, } \\ 114.829) \\ \hline \end{gathered}$	$\begin{gathered} \text { V51 (45.9318, } \\ 114.829) \\ \hline \end{gathered}$	1.64042	Free	-
B53	$\begin{gathered} \hline \text { V51 (45.9318, } \\ 114.829) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V52 (45.9318, } \\ 114.829) \\ \hline \end{gathered}$	1.64042	Free	-
B54	$\begin{gathered} \hline \text { V52 (45.9318, } \\ 114.829) \end{gathered}$	$\begin{gathered} \hline \text { V53 (49.2126, } \\ 114.829) \end{gathered}$	1.64042	Free	-
B55	$\begin{gathered} \hline \text { V53 (49.2126, } \\ 114.829) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V54 (49.2126, } \\ 111.549) \\ \hline \end{gathered}$	1.64042	Free	-
B56	$\begin{gathered} \text { V54 (49.2126, } \\ 111.549) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V55 (49.2126, } \\ 111.549) \\ \hline \end{gathered}$	1.64042	Free	-
B57	$\begin{gathered} \hline \text { V40 (49.2126, } \\ 111.549) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V55 (49.2126, } \\ 111.549) \\ \hline \end{gathered}$	1.64042	Free	-
B58	$\begin{gathered} \text { V56 (45.9318, } \\ 114.829) \end{gathered}$	$\begin{gathered} \hline \text { V47 (45.9318, } \\ 114.829) \\ \hline \end{gathered}$	1.64042	Free	-

limitstate.

limitstate © geo

B59	$\begin{gathered} \hline \text { V46 (45.9318, } \\ 114.829) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V57 }(45.9318, \\ 114.829) \\ \hline \end{gathered}$	1.64042	Free	-
B60	$\begin{gathered} \hline \text { V57 (45.9318, } \\ 114.829) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V58 (45.9318, } \\ 114.829) \\ \hline \end{gathered}$	1.64042	Free	-
B61	$\begin{gathered} \text { V58 (45.9318, } \\ 114.829) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V59 (45.9318, } \\ 114.829) \\ \hline \end{gathered}$	1.64042	Free	-
B62	$\begin{gathered} \text { V56 (45.9318, } \\ 114.829) \\ \hline \end{gathered}$	$\begin{gathered} \text { V59 (45.9318, } \\ 114.829) \\ \hline \end{gathered}$	1.64042	Free	-
B63	$\begin{gathered} \hline \text { V60 (39.3701, } \\ 114.829) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V61 (39.3701, } \\ 114.829) \\ \hline \end{gathered}$	1.64042	Free	-
B64	$\begin{gathered} \hline \text { V61 (39.3701, } \\ 114.829) \\ \hline \end{gathered}$	V62 (39.3701, 118.11)	1.64042	Free	-
B65*	V62 (39.3701, 118.11)	V63 (36.0892, 118.11)	1.64042	Free	-
B66	V63 (36.0892, 118.11)	V64 (36.0892, 118.11)	1.64042	Free	-
B67	V64 (36.0892, 118.11)	V65 (32.8084, 118.11)	1.64042	Free	-
B68	V65 (32.8084, 118.11)	V66 (32.8084, 118.11)	1.64042	Free	-
B69	V66 (32.8084, 118.11)	V67 (32.8084, 118.11)	1.64042	Free	-
B70	V67 (32.8084, 118.11)	$\begin{gathered} \text { V68 (32.8084, } \\ 114.829) \end{gathered}$	1.64042	Free	-
B71	$\begin{gathered} \text { V68 (32.8084, } \\ 114.829) \\ \hline \end{gathered}$	$\begin{gathered} \text { V69 (36.0892, } \\ 114.829) \\ \hline \end{gathered}$	1.64042	Free	-
B72	$\begin{gathered} \hline \text { V69 (36.0892, } \\ 114.829) \end{gathered}$	V70 (36.0892, 118.11)	1.64042	Free	-
B73	V70 (36.0892, 118.11)	V71 (36.0892, 118.11)	1.64042	Free	-
B74	V71 (36.0892, 118.11)	V72 (36.0892, 118.11)	1.64042	Free	-
B75	V72 (36.0892, 118.11)	V73 (39.3701, 118.11)	1.64042	Free	-
B76	V73 (39.3701, 118.11)	V74 (39.3701, 118.11)	1.64042	Free	-
B77	V74 (39.3701, 118.11)	V75 (39.3701, 118.11)	1.64042	Free	-
B78	$\begin{gathered} \text { V60 (39.3701, } \\ 114.829) \\ \hline \end{gathered}$	V75 (39.3701, 118.11)	1.64042	Free	-
B79	V76 (32.8084, 118.11)	V67 (32.8084, 118.11)	1.64042	Free	-
B80	V66 (32.8084, 118.11)	V77 (32.8084, 118.11)	1.64042	Free	-
B81	V77 (32.8084, 118.11)	V78 (32.8084, 118.11)	1.64042	Free	-
B82	V78 (32.8084, 118.11)	V79 (32.8084, 118.11)	1.64042	Free	-
B83	V76 (32.8084, 118.11)	V79 (32.8084, 118.11)	1.64042	Free	-
B84	V80 (26.9029, 118.11)	V81 (28.5433, 118.11)	1.64042	Free	-
B85	V81 (28.5433, 118.11)	$\begin{gathered} \hline \text { V82 (28.5433, } \\ 121.391) \\ \hline \end{gathered}$	1.64042	Free	-
B86*	$\begin{gathered} \hline \text { V82 (28.5433, } \\ 121.391) \\ \hline \end{gathered}$	$\begin{gathered} \text { V83 (23.9501, } \\ 121.391) \\ \hline \end{gathered}$	1.64042	Free	-
B87	$\begin{gathered} \text { V83 (23.9501, } \\ 121.391) \\ \hline \end{gathered}$	$\begin{gathered} \text { V84 (23.9501, } \\ 121.391) \\ \hline \end{gathered}$	1.64042	Free	-
B88	$\begin{gathered} \hline \text { V84 (23.9501, } \\ 121.391) \\ \hline \end{gathered}$	V85 (23.622, 121.391)	1.64042	Free	-
B89	V85 (23.622, 121.391)	V86 (23.622, 121.391)	1.64042	Free	-
B90	V86 (23.622, 121.391)	$\begin{gathered} \hline \text { V110 (23.622, } \\ 121.391) \end{gathered}$	1.64042	Free	-
B91	V87 (23.622, 118.11)	V88 (24.9344, 118.11)	1.64042	Free	-
B92	V88 (24.9344, 118.11)	$\begin{gathered} \hline \text { V89 (24.9344, } \\ 121.391) \\ \hline \end{gathered}$	1.64042	Free	-
B93	$\begin{gathered} \hline \text { V89 (24.9344, } \\ 121.391) \\ \hline \end{gathered}$	$\begin{gathered} \text { V90 (23.9501, } \\ 121.391) \\ \hline \end{gathered}$	1.64042	Free	-

limitstate

limitstate Ogeo

B94	$\begin{gathered} \hline \text { V90 (23.9501, } \\ 121.391) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V91 (23.9501, } \\ \text { 121.391) } \\ \hline \end{gathered}$	1.64042	Free	-
B95	$\begin{gathered} \hline \text { V91 (23.9501, } \\ 121.391) \end{gathered}$	$\begin{gathered} \hline \text { V92 (27.8871, } \\ 121.391) \end{gathered}$	1.64042	Free	-
B96	$\begin{gathered} \hline \text { V92 (27.8871, } \\ 121.391) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V93 (27.8871, } \\ 121.391) \\ \hline \end{gathered}$	1.64042	Free	-
B97	$\begin{gathered} \hline \text { V93 (27.8871, } \\ 121.391) \\ \hline \end{gathered}$	$\begin{gathered} \text { V94 (26.9029, } \\ 121.391) \\ \hline \end{gathered}$	1.64042	Free	-
B98	V80 (26.9029, 118.11)	$\begin{gathered} \hline \text { V94 (26.9029, } \\ 121.391) \\ \hline \end{gathered}$	1.64042	Free	-
B99	$\begin{gathered} \hline \text { V95 (12.1391, } \\ 124.672) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V96 (12.1391, } \\ 124.672) \\ \hline \end{gathered}$	1.64042	Free	Frictionless
B100	$\begin{gathered} \hline \text { V96 (12.1391, } \\ 124.672) \end{gathered}$	$\begin{gathered} \hline \text { V112 (11.1549, } \\ 124.672) \\ \hline \end{gathered}$	1.64042	Free	-
B101	$\begin{gathered} \hline \text { V97 (4.26509, } \\ 124.672) \end{gathered}$	$\begin{gathered} \hline \text { V98 (4.26509, } \\ 124.672) \\ \hline \end{gathered}$	1.64042	Fixed	-
B102	$\begin{gathered} \hline \text { V95 (12.1391, } \\ 124.672) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V114 (11.1549, } \\ 124.672) \\ \hline \end{gathered}$	1.64042	Free	-
B103	$\begin{gathered} \hline \text { V99 (4.26509, } \\ 98.4252) \end{gathered}$	$\begin{gathered} \hline \text { V100 (75.4593, } \\ 98.4252) \\ \hline \end{gathered}$	1.64042	Fixed	-
B104	$\begin{gathered} \hline \text { V100 (75.4593, } \\ 98.4252) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V15 }(75.4593, \\ 108.268) \\ \hline \end{gathered}$	1.64042	Fixed	-
B105	$\begin{gathered} \hline \text { V12 (65.6168, } \\ 108.268) \\ \hline \end{gathered}$	V23 (62.336, 111.549)	1.64042	Free	-
B106	$\begin{gathered} \hline \text { V28 (55.7743, } \\ 111.549) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V42 (49.2126, } \\ 114.829) \end{gathered}$	1.64042	Free	-
B107	$\begin{gathered} \hline \text { V58 (45.9318, } \\ 114.829) \\ \hline \end{gathered}$	V62 (39.3701, 118.11)	1.64042	Free	-
B108	V78 (32.8084, 118.11)	$\begin{gathered} \text { V82 (28.5433, } \\ 121.391) \\ \hline \end{gathered}$	1.64042	Free	-
B109	V86 (23.622, 121.391)	$\begin{gathered} \hline \text { V101 (23.294, } \\ 121.391) \\ \hline \end{gathered}$	1.64042	Free	-
B110	$\begin{gathered} \hline \text { V101 (23.294, } \\ 121.391) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V102 (22.6378, } \\ 124.672) \\ \hline \end{gathered}$	1.64042	Free	-
B111	$\begin{gathered} \hline \text { V102 (22.6378, } \\ 124.672) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V103 (20.0131, } \\ 124.672) \\ \hline \end{gathered}$	1.64042	Free	-
B112	$\begin{gathered} \hline \text { V103 (20.0131, } \\ 124.672) \\ \hline \end{gathered}$	V4 (19.0289, 124.672)	1.64042	Free	-
B113	V2 (14.1076, 124.672)	$\begin{gathered} \hline \text { V104 (14.1076, } \\ 124.672) \\ \hline \end{gathered}$	1.64042	Free	-
B114	$\begin{gathered} \hline \text { V104 (14.1076, } \\ 124.672) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V105 (12.1391, } \\ 124.672) \end{gathered}$	1.64042	Free	-
B115	$\begin{gathered} \hline \text { V105 (12.1391, } \\ 124.672) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V95 (12.1391, } \\ 124.672) \\ \hline \end{gathered}$	1.64042	Free	-
B116	$\begin{gathered} \hline \text { V99 (4.26509, } \\ 98.4252) \\ \hline \end{gathered}$	$\begin{gathered} \text { V98 (4.26509, } \\ 124.672) \\ \hline \end{gathered}$	1.64042	Fixed	-
B117	V1 (14.1076, 124.672)	$\begin{gathered} \hline \text { V106 (13.7795, } \\ 124.672) \\ \hline \end{gathered}$	1.64042	Free	-
B118	$\begin{gathered} \hline \text { V106 (13.7795, } \\ 124.672) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V107 (13.4514, } \\ 124.672) \\ \hline \end{gathered}$	1.64042	Free	-
B119	$\begin{gathered} \hline \text { V107 (13.4514, } \\ 124.672) \\ \hline \end{gathered}$	$\begin{gathered} \text { V96 (12.1391, } \\ 124.672) \\ \hline \end{gathered}$	1.64042	Free	-
B120	$\begin{gathered} \text { V31 (59.0551, } \\ 111.549) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V26 (59.0551, } \\ 111.549) \\ \hline \end{gathered}$	1.64042	Free	-
B121	$\begin{gathered} \hline \text { V102 (22.6378, } \\ 124.672) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V108 (22.6378, } \\ 121.391) \\ \hline \end{gathered}$	1.64042	Free	-
B122	$\begin{gathered} \hline \text { V108 (22.6378, } \\ 121.391) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V109 (23.294, } \\ 121.391) \\ \hline \end{gathered}$	1.64042	Free	-
B123	$\begin{gathered} \hline \text { V109 (23.294, } \\ 121.391) \end{gathered}$	$\begin{gathered} \text { V110 (23.622, } \\ 121.391) \end{gathered}$	1.64042	Free	-
B125	$\begin{gathered} \hline \text { V110 (23.622, } \\ 121.391) \\ \hline \end{gathered}$	V87 (23.622, 118.11)	1.64042	Free	-
B126	$\begin{gathered} \text { V111 (9.84252, } \\ 124.672) \\ \hline \end{gathered}$	$\begin{gathered} \text { V97 (4.26509, } \\ 124.672) \\ \hline \end{gathered}$	1.64042	Free	-

Limitstate.

B127*	V112 (11.1549, $124.672)$	V111 $(9.84252$, $124.672)$	1.64042	Free	-
B128	V111 (9.84252, $124.672)$	V113 (9.84252, $124.672)$	1.64042	Free	Frictionless
B129	V113 9.84252, $124.672)$	V98 (4.26509, $124.672)$	1.64042	Free	-
B130	V112 (11.1549, $124.672)$	V114 (11.1549, $124.672)$	1.64042	Free	Frictionless
B131	V114 (11.1549, $124.672)$	V113 (9.84252, $124.672)$	Free	-	

* Loaded boundary.

Solid Objects

ID	Vertex IDs (x, y)	Boundary IDs	Baseline Nodal Spacing (x/y)	Material(s)/Water Regime(s)
S1*	$\begin{aligned} & \text { V1 }(14.1076,124.672) \\ & \text { V2 }(14.1076,124.672) \\ & \text { V3 }(19.0289,124.672) \\ & \text { V4 }(19.0289,124.672) \\ & \text { V6 }(19.0289,124.672) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B2 } \\ & \text { B3 } \\ & \text { B4 } \\ & \text { B6 } \\ & \hline \end{aligned}$	3.28084 / 3.28084	Concrete
S6*	V40 (49.2126,111.549) V41 $(49.2126,111.549)$ V42 $(49.2126,114.829)$ V43 $(45.9318,114.829)$ V44 $(45.9318,114.829)$ V45 $(45.9318,114.829)$ V46 $(45.9318,114.829)$ V47 (45.9318,114.829) V48 (45.9318,111.549) V49 (45.9318,111.549) V50 (45.9318,114.829) V51 (45.9318,114.829) V52 (45.9318,114.829) V53 (49.2126,114.829) V54 (49.2126,111.549) V55 (49.2126,111.549)	B42 B43 B44 B45 B46 B47 B48 B49 B50 B51 B52 B53 B54 B55 B56 B57	3.28084 / 3.28084	Concrete
S7*	$\begin{aligned} & \text { V56 (45.9318,114.829) } \\ & \text { V47 (45.9318,114.829) } \\ & \text { V46 (45.9318,114.829) } \\ & \text { V57 (45.9318,114.829) } \\ & \text { V58 (45.9318,114.829) } \\ & \text { V59 (45.9318,114.829) } \end{aligned}$	B58 B48 B59 B60 B61 B62	3.28084 / 3.28084	Concrete
S8*	V60 $(39.3701,114.829)$ V61 $(39.3701,114.829)$ V62 $(39.3701,118.11)$ V63 $(36.0892,118.11)$ V64 $(36.0892,118.11)$ V65 $(32.8084,118.11)$ V66 $(32.8084,118.11)$ V67 $(32.8084,118.11)$ V68 $(32.8084,114.829)$ V69 $(36.0892,114.829)$ V70 $(36.0892,118.11)$ V71 $(36.0892,118.11)$ V72 $(36.0892,118.11)$ V73 $(39.3701,118.11)$ V74 $(39.3701,118.11)$ V75 $(39.3701,118.11)$ V76	$B 63$ B64 B65 B66 B67 B68 B69 B70 B71 B72 B73 B74 B75 B76 B77 B78	3.28084 / 3.28084	Concrete
S9*	V76 $(32.8084,118.11)$ V67 $(32.8084,118.11)$ V66 $(32.8084,118.11)$ V77 $(32.8084,118.11)$ V78 $(32.8084,118.11)$	B79 B69 B80 B81 B82	3.28084 / 3.28084	Concrete

limitstate

	V79 (32.8084,118.11)	B83		
S10*	V80 $(26.9029,118.11)$ V81 $(28.5433,118.11)$ V82 $(28.5433,121.391)$ V83 $(23.9501,121.391)$ V84 $(23.9501,121.391)$ V85 $(23.622,121.391)$ V86 $(23.622,121.391)$ V110 $(23.622,121.391)$ V87 $(23.622,118.11)$ V88 $(24.9344,118.11)$ V89 $(24.9340,121.391)$ V90 $(23.9501,121.391)$ V91 $(23.9501,121.391)$ V92 $(27.8871,121.391)$ V93 $(27.8871,121.391)$ V94 $(26.9029,121.391)$	B84 B85 B86 B87 B88 B89 B90 B125 B91 B92 B93 B94 B95 B96 B97 B98	3.28084 / 3.28084	Concrete
S13*	V105 (12.1391,124.672) V10 (14.1076,124.672) V2 $(14.1076,124.672)$ V1 $(14.1076,124.672)$ V106 $(13.7795,124.672)$ V107 $(13.4514,124.672)$ V96 (12.1391,124.672) V95 (12.1391,124.672)	B114 B113 B1 B117 B118 B119 B99 B115	3.28084 / 3.28084	Concrete
S14*	V26 $(59.0551,111.549)$ V27 $(59.0551,111.549)$ V28 $(55.7743,111.549)$ V29 $(55.7743,111.549)$ V30 $(59.0551,111.549)$ V31 $(59.0551,111.549)$	$\begin{aligned} & \hline \text { B28 } \\ & \text { B29 } \\ & \text { B30 } \\ & \text { B31 } \\ & \text { B32 } \\ & \text { B120 } \\ & \hline \end{aligned}$	3.28084 / 3.28084	Concrete
S15*	V31 (59.0551,111.549) V32 (59.0551,108.268) V33 (59.0551,108.268) V34 (59.0551,108.268) V35 (59.0551,108.268) V36 (59.0551,111.549) V37 (62.336,111.549) V38 (62.336,108.268) V39 $(62.336,108.268)$ V21 (62.336, 108.268) V22 $(62.336,108.268)$ V23 (62.336,111.549) V24 (59.0551,111.549) V25 (59.0551,111.549) V26 (59.0551,111.549)	B33 B34 B35 B36 B37 B38 B39 B40 B41 B23 B24 B25 B26 B27 B120	3.28084 / 3.28084	Concrete
S17*	V110 $(23.622,121.391)$ V86 (23.622,121.391) V101 $(23.294,121.391)$ V102 $(22.6378,124.672)$ V108 (22.6378,121.391) V109 (23.294,121.391)	B90 B109 B110 B121 B122 B123	3.28084 / 3.28084	Concrete
S18*	V110 (23.622,121.391) V87 (23.622,118.11) V88 (24.9344,118.11) V89 (24.9344,121.391) V90 (23.9501,121.391) V91 (23.9501,121.391) V92 (27.8871,121.391) V93 (27.8871,121.391) V94 (26.9029,121.391) V80 (26.9029,118.11) V81 (28.5433,118.11) V82 (28.5433,121.391) V78 (32.8084,118.11)	B125 B91 B92 B93 B94 B95 B96 B97 B98 B84 B85 B108 B82	3.28084 / 3.28084	Silty Sand with Gravel

limitstate

		B83 B79 B70 B71 B72 B73 B74 B75 B76 B77 B78 B63 B64 B107 B61 B62 B58 B49 B50 B51 B52 B53 B54 B55 B56 B57 B42 B43 B106 B30 B31 B32 B123 B113 B2 B115 B3 B112 B111 B121 B35 B131 B12 B10 B104 B116 B37 B38 B39 B40 B41 B23 B105 B13		
S112*	$\begin{aligned} & \text { V111 }(9.84252,124.672) \\ & \text { V97 }(4.26509,124.672) \\ & \text { V98 }(4.26509,124.672) \\ & \text { V113 }(9.84252,124.672) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { B126 } \\ & \text { B101 } \\ & \text { B129 } \\ & \text { B128 } \\ & \hline \end{aligned}$	3.28084 / 3.28084	Concrete
S114*	V114 (11.1549,124.672)	B102	3.28084 / 3.28084	Concrete

limitstate

limitstate © geo

	V95 (12.1391,124.672)	B99		
	V96 (12.1391,124.672)	B100		
	V112(11.1549,124.672)	B130		
S115*	V112 $(11.1549,124.672)$	B127		
	V111 $(9.84252,124.672)$	B128	$3.28084 / 3.28084$	Concrete
	V113 $(9.84252,124.672)$	B131		

* Loaded solid (self weight).

Water Table

(all distances in ft)

Water Table Status	Vertices (\mathbf{x}, \mathbf{y})
Enabled	(No water table points defined)

Water Regimes

(potentials in ft, pressures in psf (lb/ft²))
(No water regime defined)

Materials

(unit weights (weight densities) in pcf (lb/fti3), strengths in psf (lb/ft²), angles in degrees, datum level in ft, undrained strength gradient in psf (lb/ftr$) / f t)$

Mohr-Coulomb Material(s)

Key	Name	Unit Weight (Saturated Unit Weight)	Drainage Behaviour	$\mathbf{c}^{\prime}\left(\phi^{\prime}\right)$	\mathbf{c}_{u} (datum) (gradient) (grid)
	Concrete	$146.415(146.415)$	Always undrained	$0(0)$	$208854^{*}\left(0^{*}\right)\left(0^{*}\right)(-)$
	Frictionless	$0(0)$	Always drained	$0^{*}\left(0^{*}\right)$	$0(0)(0)(-)$
	Silty Sand with Gravel	$120(130)$	Drained/undrained	$184^{\star}\left(34.1^{*}\right)$	$0(0)(0)(-)$

*Property used in Scenario 1 (described in this report).

Partial Factors

Factor	User*			
Unfavourable: permanent	1			
Unfavourable: variable	1			
Unfavourable: accidental	1			
Favourable: permanent	1			
Favourable: variable	1			
Favourable: accidental	1			

limitstate

limitstate 1 geo

c^{\prime}	1			
$\tan \phi^{\prime}$	1			
c_{u}	1			

${ }^{*}$ These partial factors were used in Scenario 1 (described in this report).

Loads

(normal and shear loads in psf (lb/ft²))

Boundary Objects

Loaded Object	Type	Loading Type	Adequacy?	Normal	Shear
B6	Permanent Load	neutral	false	499.999	0
B25	Permanent Load	neutral	false	499.999	0
B44	Permanent Load	neutral	false	499.999	0
B65	Permanent Load	neutral	false	499.999	0
B86	Permanent Load	neutral	false	499.999	0
B127	Variable Load	neutral	true	2000	0

Solid Objects

Loaded Object	Type	Loading Type	Adequacy?
S1	Permanent (unfactored self weight: $146.415 \mathrm{pcf}\left(\mathrm{lb} / \mathrm{ft}^{3}\right)$)	neutral	true
S6	Permanent (unfactored self weight: $146.415 \mathrm{pcf}\left(\mathrm{lb} / \mathrm{ft}^{3}\right)$)	neutral	true
S7	Permanent (unfactored self weight: $146.415 \mathrm{pcf}\left(\mathrm{lb} / \mathrm{ft}^{3}\right)$)	neutral	true
S8	Permanent (unfactored self weight: $146.415 \mathrm{pcf}\left(\mathrm{lb} / \mathrm{ft}^{3}\right)$)	neutral	true
S9	Permanent (unfactored self weight: $146.415 \mathrm{pcf}\left(\mathrm{lb} / \mathrm{ft}^{3}\right)$)	neutral	true
S10	Permanent (unfactored self weight: $146.415 \mathrm{pcf}\left(\mathrm{lb} / \mathrm{ft}^{3}\right)$)	neutral	true
S13	Permanent (unfactored self weight: $146.415 \mathrm{pcf}\left(\mathrm{lb} / \mathrm{ft}^{3}\right)$)	neutral	true
S14	Permanent (unfactored self weight: $146.415 \mathrm{pcf}\left(\mathrm{lb} / \mathrm{ft}^{3}\right)$)	neutral	true
S15	Permanent (unfactored self weight: $146.415 \mathrm{pcf}\left(\mathrm{lb} / \mathrm{ft}^{3}\right)$)	neutral	true
S17	Permanent (unfactored self weight: $146.415 \mathrm{pcf}\left(\mathrm{lb} / \mathrm{ft}^{3}\right)$)	neutral	true
S18	Permanent (unfactored self weight: $120 \mathrm{pcf}\left(\mathrm{lb} / \mathrm{ft}^{3}\right)$)	neutral	true
S112	Permanent (unfactored self weight: $146.415 \mathrm{pcf}\left(\mathrm{lb} / \mathrm{ft}^{3}\right)$)	neutral	true
S114	Permanent (unfactored self weight: $146.415 \mathrm{pcf}\left(\mathrm{lb} / \mathrm{ft}^{3}\right)$)	neutral	true
S115	Permanent (unfactored self weight: $146.415 \mathrm{pcf}\left(\mathrm{lb} / \mathrm{ft}^{3}\right)$)	neutral	true

limitstate

This report was generated by LimitState:GEO3.5.g.24265 - limitstate.com

About this Report

This report has been generated using LimitState:GEO, a software application capable of directly identifying the critical collapse mechanism for a wide variety of geotechnical stability problems, including those involving slopes, retaining walls, footings etc.

The software utilizes the Discontinuity Layout Optimization (DLO) procedure to obtain a solution (Smith and Gilbert 2007). The main steps involved are: (i) distribution of nodes across the problem domain; (ii) connection of every node to every other node with potential discontinuities (e.g. slip-lines); (iii) application of rigorous optimization techniques to identify the critical subset of potential discontinuities, and hence also the critical failure mechanism and margin of safety.

The accuracy of the DLO solution is controlled by the specified nodal density. Within the set of all possible discontinuities linking pairs of nodes, all potential translational failure mechanisms are considered, whether anticipated or not by the engineer. Failure mechanisms involving rotations along the edges of solid bodies in the problem can also be identified. Thus in this case the solution identified by the DLO procedure is guaranteed to be the most critical solution for the problem posed. This means that there is no need to prescribe any aspect of the collapse mechanism prior to an analysis, or to separately consider different failure modes. The critical mechanism and collapse load factor are determined according to the well established upper bound theorem of plasticity.

LimitState:GEO reports the solution to a problem both visually as a collapse mechanism and numerically in terms of an Adequacy Factor, which is defined as the factor by which specified loads must be increased, or material strengths decreased, in order for the system under consideration to reach a collapse state.

REFERENCE

Smith, C.C. and Gilbert, M. (2007) Application of discontinuity layout optimization to plane plasticity problems, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 463, 2086, pp 2461-2484.

Summary

Name	Date of Analysis	Name of Engineer	Organization
Access Ramp Stability Analysis	Mon Oct 52020	HMN	GeoMat Testing Laboratories, Inc.

Reference \#	Location	Map Reference	Tags
Project No. 20229-01	Kimbark Elementary School, San Bernardino, CA	Access Ramp	

Comments
Seismic Condition

Target Nodal Density	Nodal Spacing Scale Factor	Water	Model Translational Failures?	Model Rotational Failures?	Seismic Accelerations: Horiz. $/$ Vert. (g)
Fine (1000 nodes)	1.98166	Enabled	True	Along edges	$-0.473^{\star} / 0^{\star}$

*Adequacy factor applied to seismic acceleration component.

Scenario	Partial Factor Set	Short / Long Term?	Analysis Type	Adequacy Factor
$\mathbf{1}^{\star}$	User	Long Term	Factor Strength(s)	$\mathbf{1 . 3 8 7}$

*This report provides details of this scenario, which has been identified as the most critical.
${ }^{* *}$ For Mohr Coulomb materials with Drainage Behaviour specified as 'drained/undrained', undrained properties are used in a short term analysis, and drained properties are used in a long term analysis.

Analysis Options

Factor Strength(s)

Solution Tolerance $(\%)$	Automatic Adequacy on Load(s)	Factor on Load(s)	Artificial Cohesion $\left(\mathbf{k N} / \mathbf{m}^{2}(\mathbf{k P a})\right)$
1	True	1	0.1

Geometry

(all distances in ft)

All Geometrical Objects

No. of Vertices (V)	No. of Boundaries (B)	No. of Solids (S)
101	114	14

Boundary Objects

ID	Start Vertex ID (x, y)	End Vertex ID (x, y)	Baseline Nodal Spacing	Support Type	Material(s)
B1	V1 $(14.1076,124.672)$	V2 $(14.1076,124.672)$	1.64042	Free	Frictionless
B2	V2 $(14.1076,124.672)$	V3 $(19.0289,124.672)$	1.64042	Free	-
B3	V3 $(19.0289,124.672)$	V4 $(19.0289,124.672)$	1.64042	Free	-
B4	V4 $(19.0289,124.672)$	V6 $(19.0289,124.672)$	1.64042	Free	-
B6*	V1 $(14.1076,124.672)$	V6 $(19.0289,124.672)$	1.64042	Free	-
B15	V12 (65.6168, $108.268)$	V15 (85.3018, $108.268)$	1.64042	Free	-
B23	V21 $(62.336,108.268)$	V22 (62.336, 108.268)	1.64042	Free	-
B24	V22 $(62.336,108.268)$	V23 (62.336, 111.549)	1.64042	Free	-
B25*	V23 $(62.336,111.549)$	V24 $(59.0551$,	1.64042	Free	-

limitstate

analysis \& design software for engineers

limitstate geo

B26	$\begin{gathered} \hline \text { V24 (59.0551, } \\ 111.549) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V25 (59.0551, } \\ 111.549) \\ \hline \end{gathered}$	1.64042	Free	-
B27	$\begin{gathered} \hline \mathrm{V} 25(59.0551, \\ 111.549) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V26 (59.0551, } \\ 111.549) \\ \hline \end{gathered}$	1.64042	Free	-
B28	$\begin{gathered} \hline \text { V26 (59.0551, } \\ 111.549) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V27 (59.0551, } \\ 111.549) \\ \hline \end{gathered}$	1.64042	Free	-
B29	$\begin{gathered} \text { V27 (59.0551, } \\ 111.549) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V} 28(55.7743, \\ 111.549) \\ \hline \end{gathered}$	1.64042	Free	-
B30	$\begin{gathered} \text { V28 (55.7743, } \\ 111.549) \end{gathered}$	$\begin{gathered} \hline \text { V29 (55.7743, } \\ 111.549) \end{gathered}$	1.64042	Free	-
B31	$\begin{gathered} \hline \text { V29 (55.7743, } \\ 111.549) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V30 (59.0551, } \\ 111.549) \\ \hline \end{gathered}$	1.64042	Free	-
B32	$\begin{gathered} \text { V30 (59.0551, } \\ 111.549) \end{gathered}$	$\begin{gathered} \hline \text { V31 (59.0551, } \\ 111.549) \end{gathered}$	1.64042	Free	-
B33	$\begin{gathered} \hline \text { V31 (59.0551, } \\ 111.549) \end{gathered}$	$\begin{gathered} \hline \text { V32 (59.0551, } \\ 108.268) \\ \hline \end{gathered}$	1.64042	Free	-
B34	$\begin{gathered} \text { V32 (59.0551, } \\ 108.268) \\ \hline \end{gathered}$	$\begin{gathered} \text { V33 (59.0551, } \\ 108.268) \\ \hline \end{gathered}$	1.64042	Free	-
B35	$\begin{gathered} \hline \text { V33 (59.0551, } \\ 108.268) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V34 (59.0551, } \\ 108.268) \\ \hline \end{gathered}$	1.64042	Free	-
B36	$\begin{gathered} \hline \text { V34 (59.0551, } \\ 108.268) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V35 (59.0551, } \\ 108.268) \\ \hline \end{gathered}$	1.64042	Free	-
B37	$\begin{gathered} \hline \text { V35 (59.0551, } \\ 108.268) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V36 (59.0551, } \\ 111.549) \\ \hline \end{gathered}$	1.64042	Free	-
B38	$\begin{gathered} \hline \text { V36 (59.0551, } \\ 111.549) \\ \hline \end{gathered}$	V37 (62.336, 111.549)	1.64042	Free	-
B39	V37 (62.336, 111.549)	V38 (62.336, 108.268)	1.64042	Free	-
B40	V38 (62.336, 108.268)	V39 (62.336, 108.268)	1.64042	Free	-
B41	V21 (62.336, 108.268)	V39 (62.336, 108.268)	1.64042	Free	-
B42	$\begin{gathered} \hline \text { V40 (49.2126, } \\ 111.549) \end{gathered}$	$\begin{gathered} \hline \text { V41 (49.2126, } \\ 111.549) \end{gathered}$	1.64042	Free	-
B43	$\begin{gathered} \hline \text { V41 (49.2126, } \\ 111.549) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V42 (49.2126, } \\ 114.829) \\ \hline \end{gathered}$	1.64042	Free	-
B44*	$\begin{gathered} \text { V42 (49.2126, } \\ 114.829) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V43 (45.9318, } \\ 114.829) \\ \hline \end{gathered}$	1.64042	Free	-
B45	$\begin{gathered} \hline \text { V43 (45.9318, } \\ 114.829) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V44 (45.9318, } \\ 114.829) \\ \hline \end{gathered}$	1.64042	Free	-
B46	$\begin{gathered} \hline \text { V44 (45.9318, } \\ 114.829) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V45 (45.9318, } \\ 114.829) \\ \hline \end{gathered}$	1.64042	Free	-
B47	$\begin{gathered} \text { V45 (45.9318, } \\ 114.829) \\ \hline \end{gathered}$	$\begin{gathered} \text { V46 (45.9318, } \\ 114.829) \\ \hline \end{gathered}$	1.64042	Free	-
B48	$\begin{gathered} \hline \text { V46 (45.9318, } \\ 114.829) \\ \hline \end{gathered}$	$\begin{gathered} \text { V47 (45.9318, } \\ 114.829) \\ \hline \end{gathered}$	1.64042	Free	-
B49	$\begin{gathered} \hline \text { V47 (45.9318, } \\ 114.829) \end{gathered}$	$\begin{gathered} \hline \text { V48 (45.9318, } \\ 111.549) \end{gathered}$	1.64042	Free	-
B50	$\begin{gathered} \hline \text { V48 (45.9318, } \\ 111.549) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V49 (45.9318, } \\ 111.549) \\ \hline \end{gathered}$	1.64042	Free	-
B51	$\begin{gathered} \hline \text { V49 (45.9318, } \\ 111.549) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V50 (45.9318, } \\ 114.829) \\ \hline \end{gathered}$	1.64042	Free	-
B52	$\begin{gathered} \text { V50 (45.9318, } \\ 114.829) \\ \hline \end{gathered}$	$\begin{gathered} \text { V51 (45.9318, } \\ 114.829) \\ \hline \end{gathered}$	1.64042	Free	-
B53	$\begin{gathered} \hline \text { V51 (45.9318, } \\ 114.829) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V52 (45.9318, } \\ 114.829) \\ \hline \end{gathered}$	1.64042	Free	-
B54	$\begin{gathered} \hline \text { V52 (45.9318, } \\ 114.829) \end{gathered}$	$\begin{gathered} \hline \text { V53 (49.2126, } \\ 114.829) \end{gathered}$	1.64042	Free	-
B55	$\begin{gathered} \hline \text { V53 (49.2126, } \\ 114.829) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V54 (49.2126, } \\ 111.549) \\ \hline \end{gathered}$	1.64042	Free	-
B56	$\begin{gathered} \text { V54 (49.2126, } \\ 111.549) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V55 (49.2126, } \\ 111.549) \\ \hline \end{gathered}$	1.64042	Free	-
B57	$\begin{gathered} \hline \text { V40 (49.2126, } \\ 111.549) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V55 (49.2126, } \\ 111.549) \\ \hline \end{gathered}$	1.64042	Free	-
B58	$\begin{gathered} \text { V56 (45.9318, } \\ 114.829) \end{gathered}$	$\begin{gathered} \hline \text { V47 (45.9318, } \\ 114.829) \\ \hline \end{gathered}$	1.64042	Free	-

limitstate.

limitstate © geo

B59	$\begin{gathered} \hline \text { V46 (45.9318, } \\ 114.829) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V57 }(45.9318, \\ 114.829) \\ \hline \end{gathered}$	1.64042	Free	-
B60	$\begin{gathered} \hline \text { V57 (45.9318, } \\ 114.829) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V58 (45.9318, } \\ 114.829) \\ \hline \end{gathered}$	1.64042	Free	-
B61	$\begin{gathered} \text { V58 (45.9318, } \\ 114.829) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V59 (45.9318, } \\ 114.829) \\ \hline \end{gathered}$	1.64042	Free	-
B62	$\begin{gathered} \text { V56 (45.9318, } \\ 114.829) \\ \hline \end{gathered}$	$\begin{gathered} \text { V59 (45.9318, } \\ 114.829) \\ \hline \end{gathered}$	1.64042	Free	-
B63	$\begin{gathered} \hline \text { V60 (39.3701, } \\ 114.829) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V61 (39.3701, } \\ 114.829) \\ \hline \end{gathered}$	1.64042	Free	-
B64	$\begin{gathered} \hline \text { V61 (39.3701, } \\ 114.829) \\ \hline \end{gathered}$	V62 (39.3701, 118.11)	1.64042	Free	-
B65*	V62 (39.3701, 118.11)	V63 (36.0892, 118.11)	1.64042	Free	-
B66	V63 (36.0892, 118.11)	V64 (36.0892, 118.11)	1.64042	Free	-
B67	V64 (36.0892, 118.11)	V65 (32.8084, 118.11)	1.64042	Free	-
B68	V65 (32.8084, 118.11)	V66 (32.8084, 118.11)	1.64042	Free	-
B69	V66 (32.8084, 118.11)	V67 (32.8084, 118.11)	1.64042	Free	-
B70	V67 (32.8084, 118.11)	$\begin{gathered} \text { V68 (32.8084, } \\ 114.829) \end{gathered}$	1.64042	Free	-
B71	$\begin{gathered} \text { V68 (32.8084, } \\ 114.829) \\ \hline \end{gathered}$	$\begin{gathered} \text { V69 (36.0892, } \\ 114.829) \\ \hline \end{gathered}$	1.64042	Free	-
B72	$\begin{gathered} \hline \text { V69 (36.0892, } \\ 114.829) \end{gathered}$	V70 (36.0892, 118.11)	1.64042	Free	-
B73	V70 (36.0892, 118.11)	V71 (36.0892, 118.11)	1.64042	Free	-
B74	V71 (36.0892, 118.11)	V72 (36.0892, 118.11)	1.64042	Free	-
B75	V72 (36.0892, 118.11)	V73 (39.3701, 118.11)	1.64042	Free	-
B76	V73 (39.3701, 118.11)	V74 (39.3701, 118.11)	1.64042	Free	-
B77	V74 (39.3701, 118.11)	V75 (39.3701, 118.11)	1.64042	Free	-
B78	$\begin{gathered} \text { V60 (39.3701, } \\ 114.829) \\ \hline \end{gathered}$	V75 (39.3701, 118.11)	1.64042	Free	-
B79	V76 (32.8084, 118.11)	V67 (32.8084, 118.11)	1.64042	Free	-
B80	V66 (32.8084, 118.11)	V77 (32.8084, 118.11)	1.64042	Free	-
B81	V77 (32.8084, 118.11)	V78 (32.8084, 118.11)	1.64042	Free	-
B82	V78 (32.8084, 118.11)	V79 (32.8084, 118.11)	1.64042	Free	-
B83	V76 (32.8084, 118.11)	V79 (32.8084, 118.11)	1.64042	Free	-
B84	V80 (26.9029, 118.11)	V81 (28.5433, 118.11)	1.64042	Free	-
B85	V81 (28.5433, 118.11)	$\begin{gathered} \hline \text { V82 (28.5433, } \\ 121.391) \\ \hline \end{gathered}$	1.64042	Free	-
B86*	$\begin{gathered} \hline \text { V82 (28.5433, } \\ 121.391) \\ \hline \end{gathered}$	$\begin{gathered} \text { V83 (23.9501, } \\ 121.391) \\ \hline \end{gathered}$	1.64042	Free	-
B87	$\begin{gathered} \text { V83 (23.9501, } \\ 121.391) \\ \hline \end{gathered}$	$\begin{gathered} \text { V84 (23.9501, } \\ 121.391) \\ \hline \end{gathered}$	1.64042	Free	-
B88	$\begin{gathered} \hline \text { V84 (23.9501, } \\ 121.391) \\ \hline \end{gathered}$	V85 (23.622, 121.391)	1.64042	Free	-
B89	V85 (23.622, 121.391)	V86 (23.622, 121.391)	1.64042	Free	-
B90	V86 (23.622, 121.391)	$\begin{gathered} \hline \text { V110 (23.622, } \\ 121.391) \end{gathered}$	1.64042	Free	-
B91	V87 (23.622, 118.11)	V88 (24.9344, 118.11)	1.64042	Free	-
B92	V88 (24.9344, 118.11)	$\begin{gathered} \hline \text { V89 (24.9344, } \\ 121.391) \\ \hline \end{gathered}$	1.64042	Free	-
B93	$\begin{gathered} \hline \text { V89 (24.9344, } \\ 121.391) \\ \hline \end{gathered}$	$\begin{gathered} \text { V90 (23.9501, } \\ 121.391) \\ \hline \end{gathered}$	1.64042	Free	-

limitstate

limitstate Ogeo

B94	$\begin{gathered} \hline \text { V90 (23.9501, } \\ 121.391) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V91 (23.9501, } \\ \text { 121.391) } \\ \hline \end{gathered}$	1.64042	Free	-
B95	$\begin{gathered} \hline \text { V91 (23.9501, } \\ 121.391) \end{gathered}$	$\begin{gathered} \hline \text { V92 (27.8871, } \\ 121.391) \end{gathered}$	1.64042	Free	-
B96	$\begin{gathered} \hline \text { V92 (27.8871, } \\ 121.391) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V93 (27.8871, } \\ 121.391) \\ \hline \end{gathered}$	1.64042	Free	-
B97	$\begin{gathered} \hline \text { V93 (27.8871, } \\ 121.391) \\ \hline \end{gathered}$	$\begin{gathered} \text { V94 (26.9029, } \\ 121.391) \\ \hline \end{gathered}$	1.64042	Free	-
B98	V80 (26.9029, 118.11)	$\begin{gathered} \hline \text { V94 (26.9029, } \\ 121.391) \\ \hline \end{gathered}$	1.64042	Free	-
B99	$\begin{gathered} \hline \text { V95 (12.1391, } \\ 124.672) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V96 (12.1391, } \\ 124.672) \\ \hline \end{gathered}$	1.64042	Free	Frictionless
B100	$\begin{gathered} \hline \text { V96 (12.1391, } \\ 124.672) \end{gathered}$	$\begin{gathered} \hline \text { V112 (11.1549, } \\ 124.672) \\ \hline \end{gathered}$	1.64042	Free	-
B101	$\begin{gathered} \hline \text { V97 (4.26509, } \\ 124.672) \end{gathered}$	$\begin{gathered} \hline \text { V98 (4.26509, } \\ 124.672) \\ \hline \end{gathered}$	1.64042	Fixed	-
B102	$\begin{gathered} \hline \text { V95 (12.1391, } \\ 124.672) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V114 (11.1549, } \\ 124.672) \\ \hline \end{gathered}$	1.64042	Free	-
B103	$\begin{gathered} \hline \text { V99 (4.26509, } \\ 98.4252) \end{gathered}$	$\begin{gathered} \hline \text { V100 (85.3018, } \\ 98.4252) \end{gathered}$	1.64042	Fixed	-
B104	$\begin{gathered} \hline \text { V100 (85.3018, } \\ 98.4252) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V15 (85.3018, } \\ 108.268) \\ \hline \end{gathered}$	1.64042	Fixed	-
B105	$\begin{gathered} \hline \text { V12 (65.6168, } \\ 108.268) \\ \hline \end{gathered}$	V23 (62.336, 111.549)	1.64042	Free	-
B106	$\begin{gathered} \hline \text { V28 (55.7743, } \\ 111.549) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V42 (49.2126, } \\ 114.829) \end{gathered}$	1.64042	Free	-
B107	$\begin{gathered} \hline \text { V58 (45.9318, } \\ 114.829) \\ \hline \end{gathered}$	V62 (39.3701, 118.11)	1.64042	Free	-
B108	V78 (32.8084, 118.11)	$\begin{gathered} \text { V82 (28.5433, } \\ 121.391) \\ \hline \end{gathered}$	1.64042	Free	-
B109	V86 (23.622, 121.391)	$\begin{gathered} \hline \text { V101 (23.294, } \\ 121.391) \\ \hline \end{gathered}$	1.64042	Free	-
B110	$\begin{gathered} \hline \text { V101 (23.294, } \\ 121.391) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V102 (22.6378, } \\ 124.672) \\ \hline \end{gathered}$	1.64042	Free	-
B111	$\begin{gathered} \hline \text { V102 (22.6378, } \\ 124.672) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V103 (20.0131, } \\ 124.672) \\ \hline \end{gathered}$	1.64042	Free	-
B112	$\begin{gathered} \hline \text { V103 (20.0131, } \\ 124.672) \\ \hline \end{gathered}$	V4 (19.0289, 124.672)	1.64042	Free	-
B113	V2 (14.1076, 124.672)	$\begin{gathered} \hline \text { V104 (14.1076, } \\ 124.672) \\ \hline \end{gathered}$	1.64042	Free	-
B114	$\begin{gathered} \hline \text { V104 (14.1076, } \\ 124.672) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V105 (12.1391, } \\ 124.672) \end{gathered}$	1.64042	Free	-
B115	$\begin{gathered} \hline \text { V105 (12.1391, } \\ 124.672) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V95 (12.1391, } \\ 124.672) \\ \hline \end{gathered}$	1.64042	Free	-
B116	$\begin{gathered} \hline \text { V99 (4.26509, } \\ 98.4252) \\ \hline \end{gathered}$	$\begin{gathered} \text { V98 (4.26509, } \\ 124.672) \\ \hline \end{gathered}$	1.64042	Fixed	-
B117	V1 (14.1076, 124.672)	$\begin{gathered} \hline \text { V106 (13.7795, } \\ 124.672) \\ \hline \end{gathered}$	1.64042	Free	-
B118	$\begin{gathered} \hline \text { V106 (13.7795, } \\ 124.672) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V107 (13.4514, } \\ 124.672) \\ \hline \end{gathered}$	1.64042	Free	-
B119	$\begin{gathered} \hline \text { V107 (13.4514, } \\ 124.672) \\ \hline \end{gathered}$	$\begin{gathered} \text { V96 (12.1391, } \\ 124.672) \\ \hline \end{gathered}$	1.64042	Free	-
B120	$\begin{gathered} \text { V31 (59.0551, } \\ 111.549) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V26 (59.0551, } \\ 111.549) \\ \hline \end{gathered}$	1.64042	Free	-
B121	$\begin{gathered} \hline \text { V102 (22.6378, } \\ 124.672) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V108 (22.6378, } \\ 121.391) \\ \hline \end{gathered}$	1.64042	Free	-
B122	$\begin{gathered} \hline \text { V108 (22.6378, } \\ 121.391) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { V109 (23.294, } \\ 121.391) \\ \hline \end{gathered}$	1.64042	Free	-
B123	$\begin{gathered} \hline \text { V109 (23.294, } \\ 121.391) \end{gathered}$	$\begin{gathered} \text { V110 (23.622, } \\ 121.391) \end{gathered}$	1.64042	Free	-
B125	$\begin{gathered} \hline \text { V110 (23.622, } \\ 121.391) \\ \hline \end{gathered}$	V87 (23.622, 118.11)	1.64042	Free	-
B126	$\begin{gathered} \text { V111 (9.84252, } \\ 124.672) \\ \hline \end{gathered}$	$\begin{gathered} \text { V97 (4.26509, } \\ 124.672) \\ \hline \end{gathered}$	1.64042	Free	-

Limitstate.

B127*	V112 (11.1549, $124.672)$	V111 $(9.84252$, $124.672)$	1.64042	Free	-
B128	V111 (9.84252, $124.672)$	V113 (9.84252, $124.672)$	1.64042	Free	Frictionless
B129	V113 9.84252, $124.672)$	V98 (4.26509, $124.672)$	1.64042	Free	-
B130	V112 (11.1549, $124.672)$	V114 (11.1549, $124.672)$	1.64042	Free	Frictionless
B131	V114 (11.1549, $124.672)$	V113 (9.84252, $124.672)$	Free	-	

* Loaded boundary.

Solid Objects

| ID | Vertex IDs (x, y) | Material(s)/Water |
| :---: | :---: | :---: | :---: | :---: |
| | | |

limitstate

	V79 (32.8084,118.11)	B83		
S10*	V80 $(26.9029,118.11)$ V81 $(28.5433,118.11)$ V82 $(28.5433,121.391)$ V83 $(23.9501,121.391)$ V84 $(23.9501,121.391)$ V85 $(23.622,121.391)$ V86 $(23.622,121.391)$ V110 $(23.622,121.391)$ V87 $(23.622,118.11)$ V88 $(24.9344,118.11)$ V89 $(24.9340,121.391)$ V90 $(23.9501,121.391)$ V91 $(23.9501,121.391)$ V92 $(27.8871,121.391)$ V93 $(27.8871,121.391)$ V94 $(26.9029,121.391)$	B84 B85 B86 B87 B88 B89 B90 B125 B91 B92 B93 B94 B95 B96 B97 B98	3.28084 / 3.28084	Concrete
S13*	V105 (12.1391,124.672) V10 (14.1076,124.672) V2 $(14.1076,124.672)$ V1 $(14.1076,124.672)$ V106 $(13.7795,124.672)$ V107 $(13.4514,124.672)$ V96 (12.1391,124.672) V95 (12.1391,124.672)	B114 B113 B1 B117 B118 B119 B99 B115	3.28084 / 3.28084	Concrete
S14*	V26 $(59.0551,111.549)$ V27 $(59.0551,111.549)$ V28 $(55.7743,111.549)$ V29 $(55.7743,111.549)$ V30 $(59.0551,111.549)$ V31 $(59.0551,111.549)$	$\begin{aligned} & \hline \text { B28 } \\ & \text { B29 } \\ & \text { B30 } \\ & \text { B31 } \\ & \text { B32 } \\ & \text { B120 } \\ & \hline \end{aligned}$	3.28084 / 3.28084	Concrete
S15*	V31 (59.0551,111.549) V32 (59.0551,108.268) V33 (59.0551,108.268) V34 (59.0551,108.268) V35 (59.0551,108.268) V36 (59.0551,111.549) V37 (62.336,111.549) V38 (62.336,108.268) V39 $(62.336,108.268)$ V21 (62.336, 108.268) V22 $(62.336,108.268)$ V23 (62.336,111.549) V24 (59.0551,111.549) V25 (59.0551,111.549) V26 (59.0551,111.549)	B33 B34 B35 B36 B37 B38 B39 B40 B41 B23 B24 B25 B26 B27 B120	3.28084 / 3.28084	Concrete
S17*	V110 $(23.622,121.391)$ V86 (23.622,121.391) V101 $(23.294,121.391)$ V102 $(22.6378,124.672)$ V108 (22.6378,121.391) V109 (23.294,121.391)	B90 B109 B110 B121 B122 B123	3.28084 / 3.28084	Concrete
S18*	V110 (23.622,121.391) V87 (23.622,118.11) V88 (24.9344,118.11) V89 (24.9344,121.391) V90 (23.9501,121.391) V91 (23.9501,121.391) V92 (27.8871,121.391) V93 (27.8871,121.391) V94 (26.9029,121.391) V80 (26.9029,118.11) V81 (28.5433,118.11) V82 (28.5433,121.391) V78 (32.8084,118.11)	B125 B91 B92 B93 B94 B95 B96 B97 B98 B84 B85 B108 B82	3.28084 / 3.28084	Silty Sand with Gravel

limitstate

		B83 B79 B70 B71 B72 B73 B74 B75 B76 B77 B78 B63 B64 B107 B61 B62 B58 B49 B50 B51 B52 B53 B54 B55 B56 B57 B42 B43 B106 B30 B31 B114 B2 B32 B3 B112 B111 B121 B123 B131 B34 B129 B105 B10 B36 B103 B37 B38 B39 B40 B41 B23 B10 B13		
S112*	$\begin{aligned} & \hline \text { V111 }(9.84252,124.672) \\ & \text { V97 }(4.26509,124.672) \\ & \text { V98 }(4.26509,124.672) \\ & \text { V113 }(9.84252,124.672) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { B126 } \\ & \text { B101 } \\ & \text { B129 } \\ & \text { B128 } \\ & \hline \end{aligned}$	3.28084 / 3.28084	Concrete
S114*	V114 (11.1549,124.672)	B102	3.28084 / 3.28084	Concrete

limitstate

limitstate © geo

	V95 (12.1391,124.672)	B99		
	V96 (12.1391,124.672)	B100		
	V112(11.1549,124.672)	B130		
S115*	V112 $(11.1549,124.672)$	B127		
	V111 $(9.84252,124.672)$	B128	$3.28084 / 3.28084$	Concrete
	V113 $(9.84252,124.672)$	B131		

* Loaded solid (self weight).

Water Table

(all distances in ft)

Water Table Status	Vertices (\mathbf{x}, \mathbf{y})
Enabled	(No water table points defined)

Water Regimes

(potentials in ft, pressures in psf (lb/ft²))
(No water regime defined)

Materials

(unit weights (weight densities) in pcf (lb/fti3), strengths in psf (lb/ft²), angles in degrees, datum level in ft, undrained strength gradient in psf (lb/ftr$) / f t)$

Mohr-Coulomb Material(s)

Key	Name	Unit Weight (Saturated Unit Weight)	Drainage Behaviour	$\mathbf{c}^{\prime}\left(\phi^{\prime}\right)$	\mathbf{c}_{u} (datum) (gradient) (grid)
	Concrete	$146.415(146.415)$	Always undrained	$0(0)$	$208854^{*}\left(0^{*}\right)\left(0^{*}\right)(-)$
	Frictionless	$0(0)$	Always drained	$0^{*}\left(0^{*}\right)$	$0(0)(0)(-)$
	Silty Sand with Gravel	$120(130)$	Drained/undrained	$184^{\star}\left(34.1^{*}\right)$	$0(0)(0)(-)$

*Property used in Scenario 1 (described in this report).

Partial Factors

Factor	User*			
Unfavourable: permanent	1			
Unfavourable: variable	1			
Unfavourable: accidental	1			
Favourable: permanent	1			
Favourable: variable	1			
Favourable: accidental	1			

limitstate

limitstate 1 geo

c^{\prime}	1			
$\tan \phi^{\prime}$	1			
c_{u}	1			

${ }^{*}$ These partial factors were used in Scenario 1 (described in this report).

Loads

(normal and shear loads in psf (lb/ft²))

Boundary Objects

Loaded Object	Type	Loading Type	Adequacy?	Normal	Shear
B6	Permanent Load	neutral	false	499.999	0
B25	Permanent Load	neutral	false	499.999	0
B44	Permanent Load	neutral	false	499.999	0
B65	Permanent Load	neutral	false	499.999	0
B86	Permanent Load	neutral	false	499.999	0
B127	Variable Load	neutral	true	2000	0

Solid Objects

Loaded Object	Type	Loading Type	Adequacy?
S1	Permanent (unfactored self weight: $146.415 \mathrm{pcf}\left(\mathrm{lb} / \mathrm{ft}^{3}\right)$)	neutral	true
S6	Permanent (unfactored self weight: $146.415 \mathrm{pcf}\left(\mathrm{lb} / \mathrm{ft}^{3}\right)$)	neutral	true
S7	Permanent (unfactored self weight: $146.415 \mathrm{pcf}\left(\mathrm{lb} / \mathrm{ft}^{3}\right)$)	neutral	true
S8	Permanent (unfactored self weight: $146.415 \mathrm{pcf}\left(\mathrm{lb} / \mathrm{ft}^{3}\right)$)	neutral	true
S9	Permanent (unfactored self weight: $146.415 \mathrm{pcf}\left(\mathrm{lb} / \mathrm{ft}^{3}\right)$)	neutral	true
S10	Permanent (unfactored self weight: $146.415 \mathrm{pcf}\left(\mathrm{lb} / \mathrm{ft}^{3}\right)$)	neutral	true
S13	Permanent (unfactored self weight: $146.415 \mathrm{pcf}\left(\mathrm{lb} / \mathrm{ft}^{3}\right)$)	neutral	true
S14	Permanent (unfactored self weight: $146.415 \mathrm{pcf}\left(\mathrm{lb} / \mathrm{ft}^{3}\right)$)	neutral	true
S15	Permanent (unfactored self weight: $146.415 \mathrm{pcf}\left(\mathrm{lb} / \mathrm{ft}^{3}\right)$)	neutral	true
S17	Permanent (unfactored self weight: $146.415 \mathrm{pcf}\left(\mathrm{lb} / \mathrm{ft}^{3}\right)$)	neutral	true
S18	Permanent (unfactored self weight: $120 \mathrm{pcf}\left(\mathrm{lb} / \mathrm{ft}^{3}\right)$)	neutral	true
S112	Permanent (unfactored self weight: $146.415 \mathrm{pcf}\left(\mathrm{lb} / \mathrm{ft}^{3}\right)$)	neutral	true
S114	Permanent (unfactored self weight: $146.415 \mathrm{pcf}\left(\mathrm{lb} / \mathrm{ft}^{3}\right)$)	neutral	true
S115	Permanent (unfactored self weight: $146.415 \mathrm{pcf}\left(\mathrm{lb} / \mathrm{ft}^{3}\right)$)	neutral	true

limitstate

